Subscribe to RSS
DOI: 10.1055/s-0040-1714703
Evaluation of Hypervolemia in Children
Abstract
Hypervolemia is a condition with an excess of total body water and when sodium (Na) intake exceeds output. It can have different causes, such as hypervolemic hyponatremia (often associated with decreased, effective circulating blood volume), hypervolemia associated with metabolic alkalosis, and end-stage renal disease. The degree of hypervolemia in critically ill children is a risk factor for mortality, regardless of disease severity. A child (under 18 years of age) with hypervolemia requires fluid removal and fluid restriction. Diuretics are able to increase or maintain urine output and thus improve fluid and nutrition management, but their benefit in preventing or treating acute kidney injury is questionable.
Publication History
Received: 18 January 2020
Accepted: 04 June 2020
Article published online:
30 July 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Greenbaum LA. Sodium. In: Kliegman RM, Stanton BF, St III GemeJW, Schor NF, Behrman RE. eds. Nelson Textbook of Pediatrics. 20th ed.. Philadelphia, PA: Elsevier; 2016: 350-357
- 2 Rees L, Brogan PA, Bockenhauer D, Webb NJA. eds. Paediatric Nephrology. 2nd ed.. Oxford, United Kingdom: Oxford University Press; 2012: 104-154
- 3 Spasovski G, Vanholder R, Allolio B. et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 2014; 170 (03) G1-G47
- 4 Flynn JT. Acute renal failure. In: Kaplan BS, Meyers KEC. eds. Pediatric Nephrology and Urology. The Requisites in Pediatrics. Philadelphia, PA: Mosby Inc.; 2004: 241-249
- 5 Gross P. Clinical management of SIADH. Ther Adv Endocrinol Metab 2012; 3 (02) 61-73
- 6 Hoorn EJ, Zietse R. Diagnosis and treatment of hyponatremia: compilation of the guidelines. J Am Soc Nephrol 2017; 28 (05) 1340-1349
- 7 Hojs R. Metabolic alkalosis/Presnovna alkaloza. In: Kandus A, Buturović PonikvarJ, Bren AF. eds. Evaluation of Electrolyte, Water and Acid-Base Balance Disturbances/Obravnava motenj elektrolitskega, vodnega in acidobaznega ravnotežja. Ljubljana: University Medical Centre Ljubljana; 2002: 74-78
- 8 George YWH. Easy way to understand Stewart's acid-base. Available at: http://www.acidbase.org/hbdrgs.pdf. Accessed March 22, 2020
- 9 Stewart PA. How to Understand Acid–Base: A Quantitative Acid-Base Primer for Biology and Medicine. New York, NY: Elsevier; 1981
- 10 Greenbaum LA. Acid-base balance. In: Kliegman RM, Stanton BF, St Geme III JW, Behrman RE. eds. Nelson Textbook of Pediatrics. 20th ed. Philadelphia, PA: Elsevier; 2016: 369-383
- 11 Raina R, Sethi SK, Wadhwani N, Vemuganti M, Krishnappa V, Bansal SB. Fluid overload in critically ill children. Front Pediatr 2018; 6: 306
- 12 Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012; 108 (03) 384-394
- 13 O'Connor ME, Prowle JR. Fluid overload. Crit Care Clin 2015; 31 (04) 803-821
- 14 Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care 2015; 19: 26
- 15 Schmidt EP, Yang Y, Janssen WJ. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18 (08) 1217-1223
- 16 Steppan J, Hofer S, Funke B. et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165 (01) 136-141
- 17 Nieuwdorp M, van Haeften TW, Gouverneur MC. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55 (02) 480-486
- 18 Devarajan P. Prevention and management of acute kidney injury (acute renal failure) in children. Available at: https://www.uptodate.com/contents/prevention-and-management-of-acute-kidney-injury-acute-renal-failure-in-children. Accessed December 20, 2019
- 19 Sutherland SM, Zappitelli M, Alexander SR. et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis 2010; 55 (02) 316-325
- 20 Selewski DT, Goldstein SL. The role of fluid overload in the prediction of outcome in acute kidney injury. Pediatr Nephrol 2018; 33 (01) 13-24
- 21 Li Y, Wang J, Bai Z. et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr 2016; 175 (01) 39-48
- 22 Davis AL, Carcillo JA, Aneja RK. et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017; 45 (06) 1061-1093
- 23 Hayes LW, Oster RA, Tofil NM, Tolwani AJ. Outcomes of critically ill children requiring continuous renal replacement therapy. J Crit Care 2009; 24 (03) 394-400
- 24 Goldstein SL, Somers MJ, Baum MA. et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int 2005; 67 (02) 653-658
- 25 Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol 2004; 19 (12) 1394-1399
- 26 Bellomo R, Cass A, Cole L. et al; RENAL Replacement Therapy Study Investigators. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. augmented level of replacement therapy trial. Crit Care Med 2012; 40 (06) 1753-1760
- 27 Bouchard J, Soroko SB, Chertow GM. et al; Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 2009; 76 (04) 422-427
- 28 Mehta RL, Bouchard J, Soroko SB. et al; Program to Improve Care in Acute Renal Disease (PICARD) Study Group. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med 2011; 37 (02) 241-248
- 29 Selewski DT, Cornell TT, Blatt NB. et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med 2012; 40 (09) 2694-2699
- 30 Selewski DT, Askenazi DJ, Bridges BC. et al. The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study. Pediatr Crit Care Med 2017; 18 (12) 1126-1135
- 31 Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid overload in infants following congenital heart surgery. Pediatr Crit Care Med 2013; 14 (01) 44-49
- 32 Blinder JJ, Goldstein SL, Lee VV. et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg 2012; 143 (02) 368-374
- 33 Lex DJ, Tóth R, Czobor NR. et al. Fluid overload is associated with higher mortality and morbidity in pediatric patients undergoing cardiac surgery. Pediatr Crit Care Med 2016; 17 (04) 307-314
- 34 Grist G, Whittaker C, Merrigan K. et al. The correlation of fluid balance changes during cardiopulmonary bypass to mortality in pediatric and congenital heart surgery patients. J Extra Corpor Technol 2011; 43 (04) 215-226
- 35 Sampaio TZAL, O'Hearn K, Reddy D, Menon K. The influence of fluid overload on the length of mechanical ventilation in pediatric congenital heart surgery. Pediatr Cardiol 2015; 36 (08) 1692-1699
- 36 Saini A, Delius RE, Seshadri S, Walters III H, Mastropietro CW. Passive peritoneal drainage improves fluid balance after surgery for congenital heart disease. Eur J Cardiothorac Surg 2012; 41 (02) 256-260
- 37 Sasser WC, Dabal RJ, Askenazi DJ. et al. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis 2014; 9 (02) 106-115
- 38 Ryerson LM, Mackie AS, Atallah J. et al. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg 2015; 149 (01) 222-228
- 39 Oh W, Poindexter BB, Perritt R. et al; Neonatal Research Network. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr 2005; 147 (06) 786-790
- 40 Askenazi D, Patil NR, Ambalavanan N. et al. Acute kidney injury is associated with bronchopulmonary dysplasia/mortality in premature infants. Pediatr Nephrol 2015; 30 (09) 1511-1518
- 41 McCann EM, Lewis K, Deming DD, Donovan MJ, Brady JP. Controlled trial of furosemide therapy in infants with chronic lung disease. J Pediatr 1985; 106 (06) 957-962
- 42 Barrington KJ, Fortin-Pellerin E, Pennaforte T. Fluid restriction for treatment of preterm infants with chronic lung disease. Cochrane Database Syst Rev 2017; 2: CD005389
- 43 Carcillo JA. Intravenous fluid choices in critically ill children. Curr Opin Crit Care 2014; 20 (04) 396-401
- 44 Oh GJ, Sutherland SM. Perioperative fluid management and postoperative hyponatremia in children. Pediatr Nephrol 2016; 31 (01) 53-60
- 45 Wald EL, Finer G, McBride ME, Nguyen N, Costello JM, Epting CL. Fluid management: pharmacologic and renal replacement therapies. Pediatr Crit Care Med 2016; 17 (08) (Suppl. 01) S257-S265
- 46 van der Voort PHJ, Boerma EC, Koopmans M. et al. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med 2009; 37 (02) 533-538
- 47 Kidney disease: improving global outcomes (KDIGO) CKD-MBD update work GrouKDIGO 2017 clinical practice guideline update for the diagnosis, evaluation prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl 2017; 7: e1
- 48 Axelrod DM, Anglemyer AT, Sherman-Levine SF. et al. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med 2014; 15 (01) 21-27
- 49 Moffett BS, Mott AR, Nelson DP, Goldstein SL, Jefferies JL. Renal effects of fenoldopam in critically ill pediatric patients: A retrospective review. Pediatr Crit Care Med 2008; 9 (04) 403-406
- 50 Ekart R, Bevc S, Hren M, Zorman T, Hojs R. Fluid status assessment in dialysis patients/Ocena tekočinskega stanja pri dializnih bolnikih. In: Hojs R, Pahor A, Skok P. eds. Book of lectures. 29th meeting of internal medicine specialists and family physicians From practice to practice, Maribor, May 18–19, 2018. Maribor: University Medical Centre; 2018: 68-74
- 51 Wong C, Warady BA, Srivastava T. Clinical presentation and evaluation of chronic kidney disease in children. Available at: https://www.uptodate.com/contents/clinical-presentation-and-evaluation-of-chronic-kidney-disease-in-children. Accessed December 20, 2019
- 52 Charra B, Laurent G, Chazot C. et al. Clinical assessment of dry weight. Nephrol Dial Transplant 1996; 11 (Suppl. 02) 16-19
- 53 Krause I, Birk E, Davidovits M. et al. Inferior vena cava diameter: a useful method for estimation of fluid status in children on haemodialysis. Nephrol Dial Transplant 2001; 16 (06) 1203-1206
- 54 Haciomeroglu P, Ozkaya O, Gunal N, Baysal K. Venous collapsibility index changes in children on dialysis. Nephrology (Carlton) 2007; 12 (02) 135-139
- 55 Torterüe X, Dehoux L, Macher MA. et al. Fluid status evaluation by inferior vena cava diameter and bioimpedance spectroscopy in pediatric chronic hemodialysis. BMC Nephrol 2017; 18 (01) 373
- 56 BCM – Body comšostion monitor. Innovation for better outcome. Available at: http://www.bcm-fresenius.com/22.htm. Accessed December 20, 2019
- 57 Voroneanu L, Cusai C, Hogas S. et al. The relationship between chronic volume overload and elevated blood pressure in hemodialysis patients: use of bioimpedance provides a different perspective from echocardiography and biomarker methodologies. Int Urol Nephrol 2010; 42 (03) 789-797
- 58 Dasgupta I, Keane D, Lindley E. et al. Validating the use of bioimpedance spectroscopy for assessment of fluid status in children. Pediatr Nephrol 2018; 33 (09) 1601-1607
- 59 Zaloszyc A, Schaefer B, Schaefer F. et al. Hydration measurement by bioimpedance spectroscopy and blood pressure management in children on hemodialysis. Pediatr Nephrol 2013; 28 (11) 2169-2177
- 60 Volpicelli G, Elbarbary M, Blaivas M. et al; International Liaison Committee on Lung Ultrasound (ILC-LUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012; 38 (04) 577-591
- 61 Zoccali C, Tripepi R, Torino C, Bellantoni M, Tripepi G, Mallamaci F. Lung congestion as a risk factor in end-stage renal disease. Blood Purif 2013; 36 (3-4): 184-191
- 62 Covic A, Siriopol D, Voroneanu L. Use of Lung Ultrasound for the Assessment of Volume Status in CKD. Am J Kidney Dis 2018; 71 (03) 412-422
- 63 Alexiadis G, Panagoutsos S, Roumeliotis S. et al. Comparison of multiple fluid status assessment methods in patients on chronic hemodialysis. Int Urol Nephrol 2017; 49 (03) 525-532
- 64 Siriopol D, Onofriescu M, Voroneanu L. et al. Dry weight assessment by combined ultrasound and bioimpedance monitoring in low cardiovascular risk hemodialysis patients: a randomized controlled trial. Int Urol Nephrol 2017; 49 (01) 143-153
- 65 Allinovi M, Saleem M, Romagnani P, Nazerian P, Hayes W. Lung ultrasound: a novel technique for detecting fluid overload in children on dialysis. Nephrol Dial Transplant 2017; 32 (03) 541-547
- 66 Niel O, Bastard P, Boussard C, Hogan J, Kwon T, Deschênes G. Artificial intelligence outperforms experienced nephrologists to assess dry weight in pediatric patients on chronic hemodialysis. Pediatr Nephrol 2018; 33 (10) 1799-1803