CC BY-NC-ND 4.0 · Indian Journal of Neurotrauma 2020; 17(01): 37-41
DOI: 10.1055/s-0040-1713457
Review Article

Mitochondrial Dysfunction in Traumatic Brain Injury: Management Strategies

Carlos-Andrés Bonilla-Mendoza
1   Centro de Investigaciones Biomédicas (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Columbia
,
Ezequiel Garcia-Ballestas
1   Centro de Investigaciones Biomédicas (CIB), Faculty of Medicine, University of Cartagena, Cartagena, Columbia
,
Alfonso Pacheco-Hernandez
2   Fundación Centro Colombiano de Epilepsia y Enfermedades Neurologicas–FIRE, Faculty of Medicine, University of Cartagena, Cartagena, Columbia
,
Luis-Rafael Moscote-Salazar
3   Centro de Investigaciones Biomedicas (CIB), Cartagena Neurotrauma Research Group Research Line, Faculty of Medicine, University of Cartagena, Cartagena, Columbia
,
Ravish R. Keni
4   Department of Neurology, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
,
Amit Agrawal
5   Department of Neurosurgery, Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India
› Author Affiliations

Abstract

Today, traumatic brain injuries continue to be studied, increasingly investigating the pathophysiological mechanisms that contribute to the clinical presentation, severity, and possible sequelae, but despite this, the prognosis of these patients is sometimes poor. Mitochondrial dysfunction comprises a series of reactions that contribute to the inflammatory process in these patients that have an impact on the prognosis, since it is one of the pathophysiological mechanisms involved in secondary lesions after a traumatic brain injury; and therefore has opened a field of study in the search of possible biomolecular markers that allow us to establish a prognosis and prediction of mortality.



Publication History

Article published online:
11 August 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Wang WX, Sullivan PG, Springer JE. Mitochondria and microRNA crosstalk in traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73: 104-108
  • 2 Yonutas HM, Vekaria HJ, Sullivan PG. Mitochondrial specific therapeutic targets following brain injury. Brain Res 2016; 1640 (Pt A) 77-93
  • 3 González-Domínguez R. Medium-chain fatty acids as biomarkers of mitochondrial dysfunction in traumatic brain injury. EBioMedicine 2016; 12: 8-9
  • 4 Hiebert JB, Shen Q, Thimmesch AR, Pierce JD. Traumatic brain injury and mitochondrial dysfunction. Am J Med Sci 2015; 350 (02) 132-138
  • 5 Dobrachinski F, da Rosa Gerbatin R, Sartori G. et al. Regulation of mitochondrial function and glutamatergic system are the target of guanosine effect in traumatic brain injury. J Neurotrauma 2017; 34 (07) 1318-1328
  • 6 Charry JD, Cáceres JF, Salazar AC. et al. Trauma craneoencefálico. Revisión de la literatura. Rev Chil Neurocir. 2017; 43: 177-182
  • 7 Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 2017; 143 (04) 418-431
  • 8 Saha P, Gupta R, Sen T, Sen N. Activation of cyclin D1 affects mitochondrial mass following traumatic brain injury. Neurobiol Dis 2018; 118: 108-116
  • 9 Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94 (03) 909-950
  • 10 Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 2006; 26 (11) 1407-1418
  • 11 Hill RL, Singh IN, Wang JA, Hall ED. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochem Int 2017; 111: 45-56
  • 12 Verweij BH, Muizelaar JP, Vinas FC, Peterson PL, Xiong Y, Lee CP. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg 2000; 93 (05) 815-820
  • 13 Hu C, Huang Y, Li L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci 2017; 18 (01) 144
  • 14 Fischer TD, Hylin MJ, Zhao J, Moore AN, Waxham MN, Dash PK. Altered mitochondrial dynamics and TBI pathophysiology. Front Syst Neurosci 2016; 10: 29
  • 15 Venegoni W, Shen Q, Thimmesch AR, Bell M, Hiebert JB, Pierce JD. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017; 73 (06) 1331-1338
  • 16 Zhu Y, Wang H, Fang J. et al. SS-31 provides neuroprotection by reversing mitochondrial dysfunction after traumatic brain injury. Oxid Med Cell Longev 2018; 2018: 4783602
  • 17 Millet A, Bouzat P, Trouve-Buisson T. et al. Erythropoietin and its derivates modulate mitochondrial dysfunction after diffuse traumatic brain injury. J Neurotrauma 2016; 33 (17) 1625-1633
  • 18 Mohamadpour M, Whitney K, Bergold PJ. The importance of therapeutic time window in the treatment of traumatic brain injury. Front Neurosci 2019; 13: 07