Semin Respir Crit Care Med 2020; 41(04): 496-508
DOI: 10.1055/s-0040-1710570
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Melioidosis: A Neglected Cause of Community-Acquired Pneumonia

Harjeet Singh Virk
1   Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
,
Chiranjay Mukhopadhyay
2   Center for Emerging and Tropical Diseases, Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
W. Joost Wiersinga
1   Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
3   Division of Infectious Diseases, Department of Medicine, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
› Author Affiliations
Funding W.J.W. received a Vidi grant (91716475) from the Netherlands Organization for Scientific Research (NWO). H.S.V. received a Marie Curie Sklodowska fellowship under the European Sepsis Academy, funded by the European Union's Horizon 2020 program.
Further Information

Publication History

Publication Date:
06 July 2020 (online)

Abstract

Melioidosis, caused by the facultative intracellular gram-negative pathogen Burkholderia pseudomallei, is an emerging cause of community-acquired pneumonia across the tropics. The majority of patients present with pneumonia with or without sepsis, but localized and asymptomatic infection is also well recognized. Recent modeling and epidemiological studies have demonstrated the widespread presence of B. pseudomallei in otherwise unrecognized regions with a predicted mortality of 90,000 deaths worldwide. Innovative environmental studies are also uncovering how hydrodynamic, pedology, fauna, and weather events influence geographic distribution and incidence of melioidosis cases. Of concern is the changes associated with global warming, which will be conducive to B. pseudomallei in combination with the global diabetes pandemic. In fact, over 80% of patient developing melioidosis have underlying comorbidities. For this great mimicker, culture remains the mainstay of diagnosis and despite availability of other assays, challenges still remain in reducing time to diagnosis and avoiding misdiagnosis. With institution of timely antimicrobials such as ceftazidime and supportive intensive care, overall mortality can be reduced to 10%, although this can still be as high as 50% in poorly resourced areas. Promise is on the horizon with the first human vaccine trials being planned for 2021. Meanwhile new multiomics techniques are giving us a better understanding of the role of virulence and host–pathogen interactions on patient outcomes.

 
  • References

  • 1 Whitmore A, Krishnaswami CS. A hitherto undescribed infective disease in Rangoon. Ind Med Gaz 1912; 47 (07) 262-267
  • 2 Whitmore A. An account of a glanders-like disease occurring in Rangoon. J Hyg (Lond) 1913; 13 (01) 1-34 .1
  • 3 Stanton AT, Fletcher W. Melioidosis, a new disease of the tropics. In: Far Eastern Association of Tropical Medicine: Transactions of the Fourth Congress. Batavia: Javasche Boekhandel en Drukkerij; 1921: 196-198
  • 4 Wiersinga WJ, Virk HS, Torres AG. , et al. Melioidosis. Nat Rev Dis Primers 2018; 4: 17107
  • 5 Centers for Disease Control and Prevention (CDC), Department of Health and Human Services (HHS). Possession, use, and transfer of select agents and toxins; biennial review. Final rule. Fed Regist 2012; 77 (194) 61083-61115
  • 6 Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005; 18 (02) 383-416
  • 7 Birnie E, Virk HS, Savelkoel J. , et al. Global burden of melioidosis in 2015: a systematic review and data synthesis. Lancet Infect Dis 2019; 19 (08) 892-902
  • 8 Limmathurotsakul D, Dance DA, Wuthiekanun V. , et al. Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei. PLoS Negl Trop Dis 2013; 7 (03) e2105
  • 9 Limmathurotsakul D, Golding N, Dance DA. , et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 2016; 1: 15008
  • 10 Birnie E, Wiersinga WJ, Limmathurotsakul D, Grobusch MP. Melioidosis in Africa: should we be looking more closely?. Future Microbiol 2015; 10 (02) 273-281
  • 11 Pumpuang A, Chantratita N, Wikraiphat C. , et al. Survival of Burkholderia pseudomallei in distilled water for 16 years. Trans R Soc Trop Med Hyg 2011; 105 (10) 598-600
  • 12 Hantrakun V, Rongkard P, Oyuchua M. , et al. Soil nutrient depletion is associated with the presence of Burkholderia pseudomallei. Appl Environ Microbiol 2016; 82 (24) 7086-7092
  • 13 Yip TW, Hewagama S, Mayo M. , et al. Endemic melioidosis in residents of desert region after atypically intense rainfall in central Australia, 2011. Emerg Infect Dis 2015; 21 (06) 1038-1040
  • 14 Zimmermann RE, Ribolzi O, Pierret A. , et al. Rivers as carriers and potential sentinels for Burkholderia pseudomallei in Laos. Sci Rep 2018; 8 (01) 8674
  • 15 Holden MT, Titball RW, Peacock SJ. , et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 2004; 101 (39) 14240-14245
  • 16 Tumapa S, Holden MT, Vesaratchavest M. , et al. Burkholderia pseudomallei genome plasticity associated with genomic island variation. BMC Genomics 2008; 9: 190
  • 17 Chewapreecha C, Holden MT, Vehkala M. , et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat Microbiol 2017; 2: 16263
  • 18 Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 2010; 4 (11) e900
  • 19 Melot B, Bastian S, Dournon N. , et al. Three new cases of melioidosis, Guadeloupe, French West Indies. Emerg Infect Dis 2020; 26 (03) 617-619
  • 20 Araúz AB, Castillo K, Santiago E. , et al. Geographic distribution and incidence of Melioidosis, Panama1 . Emerg Infect Dis 2020; 26 (01) 118-121
  • 21 Sanchez-Villamil JI, Torres AG. Melioidosis in Mexico, Central America, and the Caribbean. Trop Med Infect Dis 2018; 3 (01) 24
  • 22 Corea EM, Merritt AJ, Ler YH, Thevanesam V, Inglis TJ. Sri Lankan National Melioidosis Surveillance Program uncovers a nationwide distribution of invasive melioidosis. Am J Trop Med Hyg 2016; 94 (02) 292-298
  • 23 Denny CR, Nicholls L. Melioidosis in a European. Ceylon J Sci 1927; 2: 37-40
  • 24 Corea EM, de Silva AD, Thevanesam V. Melioidosis in Sri Lanka. Trop Med Infect Dis 2018; 3 (01) 22
  • 25 Gibney KB, Cheng AC. Reducing the melioidosis burden: public health, chronic disease prevention, or improved case management?. Lancet Infect Dis 2019; 19 (08) 800-802
  • 26 Birnie E, Savelkoel J, Reubsaet F. , et al; Dutch Melioidosis Study Group. Melioidosis in travelers: an analysis of Dutch melioidosis registry data 1985-2018. Travel Med Infect Dis 2019; (e-pub ahead of print) DOI: 10.1016/j.tmaid.2019.07.01.
  • 27 Le Tohic S, Montana M, Koch L, Curti C, Vanelle P. A review of melioidosis cases imported into Europe. Eur J Clin Microbiol Infect Dis 2019; 38 (08) 1395-1408
  • 28 Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med 2012; 367 (11) 1035-1044
  • 29 Merritt AJ, Inglis TJJ. The role of climate in the epidemiology of melioidosis. Curr Trop Med Rep 2017; 4 (04) 185-191
  • 30 Chen PS, Chen YS, Lin HH. , et al. Airborne transmission of melioidosis to humans from environmental aerosols contaminated with B. pseudomallei. PLoS Negl Trop Dis 2015; 9 (06) e0003834
  • 31 Bulterys PL, Bulterys MA, Phommasone K. , et al. Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis. Lancet Planet Health 2018; 2 (08) e334-e343
  • 32 Norris MH, Somprasong N, Schweizer HP, Tuanyok A. Lipid a remodeling is a pathoadaptive mechanism that impacts lipopolysaccharide recognition and intracellular survival of Burkholderia pseudomallei. Infect Immun 2018; 86 (10) 86
  • 33 Günther SD, Fritsch M, Seeger JM. , et al. Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nat Microbiol 2020; 5 (02) 354-367
  • 34 Webb JR, Sarovich DS, Price EP, Ward LM, Mayo M, Currie BJ. Burkholderia pseudomallei lipopolysaccharide genotype does not correlate with severity or outcome in melioidosis: host risk factors remain the critical determinant. Open Forum Infect Dis 2019; 6 (04) ofz091
  • 35 Weehuizen TAF, Birnie E, Ferwerda B. , et al. Differences in inflammation patterns induced by African and Asian Burkholderia pseudomallei isolates in mice. Am J Trop Med Hyg 2017; 96 (06) 1365-1369
  • 36 Chewapreecha C, Mather AE, Harris SR. , et al. Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei . Commun Biol 2019; 2: 428
  • 37 Shaw T, Tellapragada C, Kamath A, Kalwaje Eshwara V, Mukhopadhyay C. Implications of environmental and pathogen-specific determinants on clinical presentations and disease outcome in melioidosis patients. PLoS Negl Trop Dis 2019; 13 (05) e0007312
  • 38 Smith S, Hanson J, Currie BJ. Melioidosis: an Australian perspective. Trop Med Infect Dis 2018; 3 (01) 27
  • 39 Chierakul W, Wuthiekanun V, Chaowagul W. , et al. Short report: disease severity and outcome of melioidosis in HIV coinfected individuals. Am J Trop Med Hyg 2005; 73 (06) 1165-1166
  • 40 Haque A, Easton A, Smith D. , et al. Role of T cells in innate and adaptive immunity against murine Burkholderia pseudomallei infection. J Infect Dis 2006; 193 (03) 370-379
  • 41 Jenjaroen K, Chumseng S, Sumonwiriya M. , et al. T-Cell responses are associated with survival in acute melioidosis patients. PLoS Negl Trop Dis 2015; 9 (10) e0004152
  • 42 Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N. , et al. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010; 82 (06) 1113-1117
  • 43 Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 2008; 5 (07) e152
  • 44 van Crevel R, van de Vijver S, Moore DAJ. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries?. Lancet Diabetes Endocrinol 2017; 5 (06) 457-468
  • 45 Cho NH, Shaw JE, Karuranga S. , et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-281
  • 46 Kronsteiner B, Chaichana P, Sumonwiriya M. , et al. Diabetes alters immune response patterns to acute melioidosis in humans. Eur J Immunol 2019; 49 (07) 1092-1106
  • 47 Morris J, Williams N, Rush C. , et al. Burkholderia pseudomallei triggers altered inflammatory profiles in a whole-blood model of type 2 diabetes-melioidosis comorbidity. Infect Immun 2012; 80 (06) 2089-2099
  • 48 Koh GC, Peacock SJ, van der Poll T, Wiersinga WJ. The impact of diabetes on the pathogenesis of sepsis. Eur J Clin Microbiol Infect Dis 2012; 31 (04) 379-388
  • 49 Easton A, Haque A, Chu K, Lukaszewski R, Bancroft GJ. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J Infect Dis 2007; 195 (01) 99-107
  • 50 Chin CY, Monack DM, Nathan S. Delayed activation of host innate immune pathways in streptozotocin-induced diabetic hosts leads to more severe disease during infection with Burkholderia pseudomallei. Immunology 2012; 135 (04) 312-332
  • 51 Chanchamroen S, Kewcharoenwong C, Susaengrat W, Ato M, Lertmemongkolchai G. Human polymorphonuclear neutrophil responses to Burkholderia pseudomallei in healthy and diabetic subjects. Infect Immun 2009; 77 (01) 456-463
  • 52 Mariappan V, Thimma J, Vellasamy KM, Shankar EM, Vadivelu J. Adhesion and invasion attributes of Burkholderia pseudomallei are dependent on airway surface liquid and glucose concentrations in lung epithelial cells. Environ Microbiol Rep 2018; 10 (02) 217-225
  • 53 Stewart JD, Smith S, Binotto E, McBride WJ, Currie BJ, Hanson J. The epidemiology and clinical features of melioidosis in Far North Queensland: implications for patient management. PLoS Negl Trop Dis 2017; 11 (03) e0005411
  • 54 Zueter A, Yean CY, Abumarzouq M, Rahman ZA, Deris ZZ, Harun A. The epidemiology and clinical spectrum of melioidosis in a teaching hospital in a North-Eastern state of Malaysia: a fifteen-year review. BMC Infect Dis 2016; 16: 333
  • 55 Chalmers RM, Majoni SW, Ward L, Perry GJ, Jabbar Z, Currie BJ. Melioidosis and end-stage renal disease in tropical northern Australia. Kidney Int 2014; 86 (05) 867-870
  • 56 Jimenez Jr VM, Settles EW, Currie BJ, Keim PS, Monroy FP. Persistence of Burkholderia thailandensis E264 in lung tissue after a single binge alcohol episode. PLoS One 2019; 14 (12) e0218147
  • 57 Suputtamongkol Y, Chaowagul W, Chetchotisakd P. , et al. Risk factors for melioidosis and bacteremic melioidosis. Clin Infect Dis 1999; 29 (02) 408-413
  • 58 Fong SM, Wong KJ, Fukushima M, Yeo TW. Thalassemia major is a major risk factor for pediatric melioidosis in Kota Kinabalu, Sabah, Malaysia. Clin Infect Dis 2015; 60 (12) 1802-1807
  • 59 Wiener E. Impaired phagocyte antibacterial effector functions in beta-thalassemia: a likely factor in the increased susceptibility to bacterial infections. Hematology 2003; 8 (01) 35-40
  • 60 Siwaponanan P, Siegers JY, Ghazali R. , et al. Reduced PU.1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients. Blood 2017; 129 (23) 3087-3099
  • 61 McLeod C, Morris PS, Bauert PA. , et al. Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. Clin Infect Dis 2015; 60 (01) 21-26
  • 62 Lim MK, Tan EH, Soh CS, Chang TL. Burkholderia pseudomallei infection in the Singapore Armed Forces from 1987 to 1994--an epidemiological review. Ann Acad Med Singapore 1997; 26 (01) 13-17
  • 63 Limmathurotsakul D, Kanoksil M, Wuthiekanun V. , et al. Activities of daily living associated with acquisition of melioidosis in northeast Thailand: a matched case-control study. PLoS Negl Trop Dis 2013; 7 (02) e2072
  • 64 Thatrimontrichai A, Maneenil G. Neonatal melioidosis: systematic review of the literature. Pediatr Infect Dis J 2012; 31 (11) 1195-1197
  • 65 Kinoshita RE. Epidemiology of melioidosis in an oceanarium: a clinical, environmental and molecular study. University of Hong Kong; 2003
  • 66 Currie BJ, Price EP, Mayo M. , et al. Use of whole-genome sequencing to link Burkholderia pseudomallei from air sampling to mediastinal melioidosis, Australia. Emerg Infect Dis 2015; 21 (11) 2052-2054
  • 67 Hsueh PT, Huang WT, Hsueh HK, Chen YL, Chen YS. Transmission modes of melioidosis in Taiwan. Trop Med Infect Dis 2018; 3 (01) 26
  • 68 Holland DJ, Wesley A, Drinkovic D, Currie BJ. Cystic Fibrosis and Burkholderia pseudomallei infection: an emerging problem?. Clin Infect Dis 2002; 35 (12) e138-e140
  • 69 McCormick JB, Sexton DJ, McMurray JG, Carey E, Hayes P, Feldman RA. Human-to-human transmission of Pseudomonas pseudomallei . Ann Intern Med 1975; 83 (04) 512-513
  • 70 Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, Kemp DJ. A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg 2001; 65 (03) 177-179
  • 71 Limmathurotsakul D, Wongsuvan G, Aanensen D. , et al. Melioidosis caused by Burkholderia pseudomallei in drinking water, Thailand, 2012. Emerg Infect Dis 2014; 20 (02) 265-268
  • 72 Brosh-Nissimov T, Grupel D, Abuhasira S. , et al. Case report: imported melioidosis from Goa, India to Israel, 2018. Am J Trop Med Hyg 2019; 101 (03) 580-584
  • 73 Merritt AJ, Peck M, Gayle D. , et al. Cutaneous melioidosis cluster caused by contaminated wound irrigation fluid. Emerg Infect Dis 2016; 22 (08) 22
  • 74 Greer RC, Wangrangsimakul T, Amornchai P. , et al. Misidentification of Burkholderia pseudomallei as Acinetobacter species in northern Thailand. Trans R Soc Trop Med Hyg 2019; 113 (01) 48-51
  • 75 Subakir H, Chong YM, Chan YF. , et al. Selective media and real-time PCR improves diagnosis of melioidosis in community-acquired pneumonia in a low-incidence setting in Kuala Lumpur, Malaysia. J Med Microbiol 2020; 69 (01) 49-51
  • 76 Turner P, Kloprogge S, Miliya T. , et al. A retrospective analysis of melioidosis in Cambodian children, 2009-2013. BMC Infect Dis 2016; 16 (01) 688
  • 77 Tellapragada C, Shaw T, D'Souza A, Eshwara VK, Mukhopadhyay C. Improved detection of Burkholderia pseudomallei from non-blood clinical specimens using enrichment culture and PCR: narrowing diagnostic gap in resource-constrained settings. Trop Med Int Health 2017; 22 (07) 866-870
  • 78 Limmathurotsakul D, Jamsen K, Arayawichanont A. , et al. Defining the true sensitivity of culture for the diagnosis of melioidosis using Bayesian latent class models. PLoS One 2010; 5 (08) e12485
  • 79 Sheridan EA, Ramsay AR, Short JM, Stepniewska K, Wuthiekanun V, Simpson AJ. Evaluation of the Wayson stain for the rapid diagnosis of melioidosis. J Clin Microbiol 2007; 45 (05) 1669-1670
  • 80 Tandhavanant S, Wongsuvan G, Wuthiekanun V. , et al. Monoclonal antibody-based immunofluorescence microscopy for the rapid identification of Burkholderia pseudomallei in clinical specimens. Am J Trop Med Hyg 2013; 89 (01) 165-168
  • 81 Hoffmaster AR, AuCoin D, Baccam P. , et al. Melioidosis diagnostic workshop, 2013. Emerg Infect Dis 2015; 21 (02) 21
  • 82 Duval BD, Elrod MG, Gee JE. , et al. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei . Am J Trop Med Hyg 2014; 90 (06) 1043-1046
  • 83 Gee JE, Sacchi CT, Glass MB. , et al. Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei . J Clin Microbiol 2003; 41 (10) 4647-4654
  • 84 Kaestli M, Richardson LJ, Colman RE. , et al. Comparison of TaqMan PCR assays for detection of the melioidosis agent Burkholderia pseudomallei in clinical specimens. J Clin Microbiol 2012; 50 (06) 2059-2062
  • 85 Houghton RL, Reed DE, Hubbard MA. , et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 2014; 8 (03) e2727
  • 86 Robertson G, Sorenson A, Govan B. , et al. Rapid diagnostics for melioidosis: a comparative study of a novel lateral flow antigen detection assay. J Med Microbiol 2015; 64 (08) 845-848
  • 87 Shaw T, Tellapragada C, Ke V, AuCoin DP, Mukhopadhyay C. Performance evaluation of Active Melioidosis Detect-Lateral Flow Assay (AMD-LFA) for diagnosis of melioidosis in endemic settings with limited resources. PLoS One 2018; 13 (03) e0194595
  • 88 Schully KL, Young CC, Mayo M. , et al. Next-generation diagnostics for melioidosis: evaluation of a prototype i-STAT cartridge to detect Burkholderia pseudomallei biomarkers. Clin Infect Dis 2019; 69 (03) 421-427
  • 89 Vandana KE, Mukhopadhyay C, Tellapragada C. , et al. Seroprevalence of Burkholderia pseudomallei among adults in coastal areas in southwestern India. PLoS Negl Trop Dis 2016; 10 (04) e0004610
  • 90 Chaichana P, Jenjaroen K, Amornchai P. , et al. Antibodies in melioidosis: the role of the indirect hemagglutination assay in evaluating patients and exposed populations. Am J Trop Med Hyg 2018; 99 (06) 1378-1385
  • 91 Cheng AC, O'brien M, Freeman K, Lum G, Currie BJ. Indirect hemagglutination assay in patients with melioidosis in northern Australia. Am J Trop Med Hyg 2006; 74 (02) 330-334
  • 92 Cheng AC, Peacock SJ, Limmathurotsakul D. , et al. Prospective evaluation of a rapid immunochromogenic cassette test for the diagnosis of melioidosis in northeast Thailand. Trans R Soc Trop Med Hyg 2006; 100 (01) 64-67
  • 93 Suttisunhakul V, Wuthiekanun V, Brett PJ. , et al. Development of rapid enzyme-linked immunosorbent assays for detection of antibodies to Burkholderia pseudomallei . J Clin Microbiol 2016; 54 (05) 1259-1268
  • 94 Kohler C, Dunachie SJ, Müller E. , et al. Rapid and sensitive multiplex detection of Burkholderia pseudomallei-specific antibodies in melioidosis patients based on a protein microarray approach. PLoS Negl Trop Dis 2016; 10 (07) e0004847
  • 95 Sarovich DS, Price EP, Webb JR. , et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS One 2014; 9 (03) e91682
  • 96 Currie BJ, Fisher DA, Anstey NM, Jacups SP. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 2000; 94 (03) 301-304
  • 97 Chierakul W, Winothai W, Wattanawaitunechai C. , et al. Melioidosis in 6 tsunami survivors in southern Thailand. Clin Infect Dis 2005; 41 (07) 982-990
  • 98 Gee JE, Gulvik CA, Elrod MG. , et al. Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere. Emerg Infect Dis 2017; 23 (07) 1133-1138
  • 99 Maharjan B, Chantratita N, Vesaratchavest M. , et al. Recurrent melioidosis in patients in northeast Thailand is frequently due to reinfection rather than relapse. J Clin Microbiol 2005; 43 (12) 6032-6034
  • 100 Halim I, Shaw T, Tellapragada C, Vandana KE, Mukhopadhyay C. Melioidosis: reinfection going incognito as relapse. Indian J Med Microbiol 2017; 35 (04) 593-596
  • 101 Meumann EM, Cheng AC, Ward L, Currie BJ. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 2012; 54 (03) 362-369
  • 102 Reechaipichitkul W. Clinical manifestation of pulmonary melioidosis in adults. Southeast Asian J Trop Med Public Health 2004; 35 (03) 664-669
  • 103 Kung CT, Li CJ, Hung SC. , et al. Acute melioid community-acquired pneumonia. Int J Infect Dis 2011; 15 (09) e627-e630
  • 104 Zhao J, Yap A, Wu E, Yap J. A mimic of bronchogenic carcinoma - pulmonary melioidosis. Respir Med Case Rep 2020; 29: 101006
  • 105 Burivong W, Wu X, Saenkote W, Stern EJ. Thoracic radiologic manifestations of melioidosis. Curr Probl Diagn Radiol 2012; 41 (06) 199-209
  • 106 Suntornsut P, Kasemsupat K, Silairatana S. , et al. Prevalence of melioidosis in patients with suspected pulmonary tuberculosis and sputum smear negative for acid-fast bacilli in northeast Thailand. Am J Trop Med Hyg 2013; 89 (05) 983-985
  • 107 Pho Y, Nhem S, Sok C. , et al. Melioidosis in patients with suspected tuberculosis in Cambodia: a single-center cross-sectional study. Int J Tuberc Lung Dis 2018; 22 (12) 1481-1485
  • 108 Huis in 't Veld D, Wuthiekanun V, Cheng AC. , et al. The role and significance of sputum cultures in the diagnosis of melioidosis. Am J Trop Med Hyg 2005; 73 (04) 657-661
  • 109 Kwon EH, Reisler RB, Cardile AP. , et al. Distinguishing respiratory features of category A/B potential bioterrorism agents from community-acquired pneumonia. Health Secur 2018; 16 (04) 224-238
  • 110 Geake JB, Reid DW, Currie BJ. , et al; MelioidCF Investigators. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm Med 2015; 15: 116
  • 111 Tang RY, Lim SH, Lam JE, Nurasykin S, Eileen T, Chan YW. A 5-year retrospective study of melioidosis cases treated in a district specialist hospital. Med J Malaysia 2019; 74 (06) 472-476
  • 112 Crowe A, McMahon N, Currie BJ, Baird RW. Current antimicrobial susceptibility of first-episode melioidosis Burkholderia pseudomallei isolates from the Northern Territory, Australia. Int J Antimicrob Agents 2014; 44 (02) 160-162
  • 113 Lipsitz R, Garges S, Aurigemma R. , et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010. Emerg Infect Dis 2012; 18 (12) e2
  • 114 Podin Y, Sarovich DS, Price EP. , et al. Burkholderia pseudomallei isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. Antimicrob Agents Chemother 2014; 58 (01) 162-166
  • 115 Nhung PH, Van VH, Anh NQ, Phuong DM. Antimicrobial susceptibility of Burkholderia pseudomallei isolates in Northern Vietnam. J Glob Antimicrob Resist 2019; 18: 34-36
  • 116 Sarovich DS, Webb JR, Pitman MC. , et al. Raising the stakes: loss of efflux pump regulation decreases meropenem susceptibility in Burkholderia pseudomallei . Clin Infect Dis 2018; 67 (02) 243-250
  • 117 Amladi A, Devanga Ragupathi NK, Vasudevan K, Venkatesan M, Anandan S, Veeraraghavan B. First report of Burkholderia pseudomallei ST412 and ST734 clones harbouring blaOXA-57 but susceptible to imipenem in India. New Microbes New Infect 2019; 32: 100613
  • 118 Slack A, Parsonson F, Cronin K, Engler C, Norton R. Activity of ceftolozane-tazobactam against Burkholderia pseudomallei . Am J Trop Med Hyg 2018; 99 (02) 281-282
  • 119 Currie BJ. Melioidosis: evolving concepts in epidemiology, pathogenesis, and treatment. Semin Respir Crit Care Med 2015; 36 (01) 111-125
  • 120 White NJ, Dance DA, Chaowagul W, Wattanagoon Y, Wuthiekanun V, Pitakwatchara N. Halving of mortality of severe melioidosis by ceftazidime. Lancet 1989; 2 (8665): 697-701
  • 121 Cheng AC, Fisher DA, Anstey NM, Stephens DP, Jacups SP, Currie BJ. Outcomes of patients with melioidosis treated with meropenem. Antimicrob Agents Chemother 2004; 48 (05) 1763-1765
  • 122 Pitman MC, Luck T, Marshall CS, Anstey NM, Ward L, Currie BJ. Intravenous therapy duration and outcomes in melioidosis: a new treatment paradigm. PLoS Negl Trop Dis 2015; 9 (03) e0003586
  • 123 Simpson AJ, Suputtamongkol Y, Smith MD. , et al. Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin Infect Dis 1999; 29 (02) 381-387
  • 124 Chierakul W, Anunnatsiri S, Chaowagul W, Peacock SJ, Chetchotisakd P, Day NP. Addition of trimethoprim-sulfamethoxazole to ceftazidime during parenteral treatment of melioidosis is not associated with a long-term outcome benefit. Clin Infect Dis 2007; 45 (04) 521-523
  • 125 Chierakul W, Anunnatsiri S, Short JM. , et al. Two randomized controlled trials of ceftazidime alone versus ceftazidime in combination with trimethoprim-sulfamethoxazole for the treatment of severe melioidosis. Clin Infect Dis 2005; 41 (08) 1105-1113
  • 126 Chetchotisakd P, Chierakul W, Chaowagul W. , et al. Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet 2014; 383 (9919): 807-814
  • 127 Tapia D, Sanchez-Villamil JI, Torres AG. Emerging role of biologics for the treatment of melioidosis and glanders. Expert Opin Biol Ther 2019; 19 (12) 1319-1332
  • 128 Cheng AC, Stephens DP, Anstey NM, Currie BJ. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis. Clin Infect Dis 2004; 38 (01) 32-37
  • 129 Cheng AC, Limmathurotsakul D, Chierakul W. , et al. A randomized controlled trial of granulocyte colony-stimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin Infect Dis 2007; 45 (03) 308-314
  • 130 Cheng AC, West TE, Limmathurotsakul D, Peacock SJ. Strategies to reduce mortality from bacterial sepsis in adults in developing countries. PLoS Med 2008; 5 (08) e175
  • 131 Stephens DP, Thomas JH, Ward LM, Currie BJ. Melioidosis causing critical illness: a review of 24 years of experience from the Royal Darwin Hospital ICU. Crit Care Med 2016; 44 (08) 1500-1505
  • 132 Boyd R, McGuiness S, Draper AD, Neilson M, Krause V. Melioidosis awareness campaign....Don't get melioidosis. North Territ Dis Control Bull 2016; 23: 1-6
  • 133 Suntornsut P, Chaowagul W, Thongklang W. , et al. Feasibility and initial outcomes of a multifaceted prevention programme of melioidosis in diabetic patients in Ubon Ratchathani, northeast Thailand. PLoS Negl Trop Dis 2018; 12 (09) e0006765
  • 134 Patel N, Conejero L, De Reynal M, Easton A, Bancroft GJ, Titball RW. Development of vaccines against Burkholderia pseudomallei . Front Microbiol 2011; 2: 198
  • 135 Morici L, Torres AG, Titball RW. Novel multi-component vaccine approaches for Burkholderia pseudomallei . Clin Exp Immunol 2019; 196 (02) 178-188
  • 136 Torres AG, Gregory AE, Hatcher CL. , et al. Protection of non-human primates against glanders with a gold nanoparticle glycoconjugate vaccine. Vaccine 2015; 33 (05) 686-692
  • 137 Hogan RJ, Lafontaine ER. Antibodies are major drivers of protection against lethal aerosol infection with highly pathogenic Burkholderia spp. MSphere 2019; 4 (01) 4
  • 138 Burtnick MN, Shaffer TL, Ross BN. , et al. Development of subunit vaccines that provide high-level protection and sterilizing immunity against acute inhalational melioidosis. Infect Immun 2017; 86 (01) 86
  • 139 Luangasanatip N, Flasche S, Dance DAB. , et al. The global impact and cost-effectiveness of a melioidosis vaccine. BMC Med 2019; 17 (01) 129
  • 140 Hanson J, Smith S. High rates of premature and potentially preventable death among patients surviving melioidosis in tropical Australia. Am J Trop Med Hyg 2019; 101 (02) 328-331
  • 141 Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality after sepsis: propensity matched cohort study. BMJ 2016; 353: i2375
  • 142 Mohapatra PR, Behera B, Mohanty S, Bhuniya S, Mishra B. Melioidosis. Lancet Infect Dis 2019; 19 (10) 1056-1057