Semin Respir Crit Care Med 2021; 42(01): 059-077
DOI: 10.1055/s-0040-1710320
Review Article

Vasopressor Therapy in the Intensive Care Unit

James A. Russell
1   Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
2   Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
,
Anthony C. Gordon
3   Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom
4   Department of Surgery and Cancer, Intensive Care Unit, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
,
Mark D. Williams
5   Department of Medicine, Indiana University Health Methodist Hospital, Indiana University School of Medicine, Indianapolis, Indiana
,
John H. Boyd
1   Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
2   Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
,
Keith R. Walley
1   Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
2   Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
,
Niranjan Kissoon
6   Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
› Author Affiliations

Abstract

After fluid administration for vasodilatory shock, vasopressors are commonly infused. Causes of vasodilatory shock include septic shock, post-cardiovascular surgery, post-acute myocardial infarction, postsurgery, other causes of an intense systemic inflammatory response, and drug -associated anaphylaxis. Therapeutic vasopressors are hormones that activate receptors—adrenergic: α1, α2, β1, β2; angiotensin II: AG1, AG2; vasopressin: AVPR1a, AVPR1B, AVPR2; dopamine: DA1, DA2. Vasopressor choice and dose vary widely because of patient and physician practice heterogeneity. Vasopressor adverse effects are excessive vasoconstriction causing organ ischemia/infarction, hyperglycemia, hyperlactatemia, tachycardia, and tachyarrhythmias. To date, no randomized controlled trial (RCT) of vasopressors has shown a decreased 28-day mortality rate. There is a need for evidence regarding alternative vasopressors as first-line vasopressors. We emphasize that vasopressors should be administered simultaneously with fluid replacement to prevent and decrease duration of hypotension in shock with vasodilation. Norepinephrine is the first-choice vasopressor in septic and vasodilatory shock. Interventions that decrease norepinephrine dose (vasopressin, angiotensin II) have not decreased 28-day mortality significantly. In patients not responsive to norepinephrine, vasopressin or epinephrine may be added. Angiotensin II may be useful for rapid resuscitation of profoundly hypotensive patients. Inotropic agent(s) (e.g., dobutamine) may be needed if vasopressors decrease ventricular contractility. Dopamine has fallen to almost no-use recommendation because of adverse effects; angiotensin II is available clinically; there are potent vasopressors with scant literature (e.g., methylene blue); and the novel V1a agonist selepressin missed on its pivotal RCT primary outcome. In pediatric septic shock, vasopressors, epinephrine, and norepinephrine are recommended equally because there is no clear evidence that supports the use of one vasoactive agent. Dopamine is recommended when epinephrine or norepinephrine is not available. New strategies include perhaps patients will be started on several vasopressors with complementary mechanisms of action, patients may be selected for particular vasopressors according to predictive biomarkers, and novel vasopressors may emerge with fewer adverse effects.



Publication History

Article published online:
20 August 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Rhodes A, Evans LE, Alhazzani W. et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017; 45 (03) 486-552
  • 2 Russell JA. Vasopressor therapy in critically ill patients with shock. Intensive Care Med 2019; 45 (11) 1503-1517
  • 3 Russell JA. Physician culture and vasopressin use in septic shock. Ann Am Thorac Soc 2016; 13 (10) 1677-1679
  • 4 Vail EA, Gershengorn HB, Hua M, Walkey AJ, Wunsch H. Epidemiology of vasopressin use for adults with septic shock. Ann Am Thorac Soc 2016; 13 (10) 1760-1767
  • 5 Russell JA. Is there a good MAP for septic shock?. N Engl J Med 2014; 370 (17) 1649-1651
  • 6 Gamper G, Havel C, Arrich J. et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev 2016; 2: CD003709
  • 7 Asfar P, Teboul JL, Radermacher P. High versus low blood-pressure target in septic shock. N Engl J Med 2014; 371 (03) 283-284
  • 8 Asfar P, Meziani F, Hamel JF. et al; SEPSISPAM Investigators. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014; 370 (17) 1583-1593
  • 9 Lamontagne F, Day AG, Meade MO. et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med 2018; 44 (01) 12-21
  • 10 Singer M, Deutschman CS, Seymour CW. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 11 Seymour CW, Liu VX, Iwashyna TJ. et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315 (08) 762-774
  • 12 Russell JA, Walley KR, Singer J. et al; VASST Investigators. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008; 358 (09) 877-887
  • 13 Russell JA, Lee T, Singer J, Boyd JH, Walley KR. Vasopressin and Septic Shock Trial (VASST) Group. The Septic Shock 3.0 definition and trials: a vasopressin and septic shock trial experience. Crit Care Med 2017; 45 (06) 940-948
  • 14 Gordon AC, Mason AJ, Thirunavukkarasu N. et al; VANISH Investigators. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA 2016; 316 (05) 509-518
  • 15 Khanna A, English SW, Wang XS. et al; ATHOS-3 Investigators. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med 2017; 377 (05) 419-430
  • 16 Annane D, Renault A, Brun-Buisson C. et al; CRICS-TRIGGERSEP Network. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med 2018; 378 (09) 809-818
  • 17 Annane D, Sébille V, Charpentier C. et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288 (07) 862-871
  • 18 Sprung CL, Caralis PV, Marcial EH. et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med 1984; 311 (18) 1137-1143
  • 19 Venkatesh B, Finfer S, Cohen J. et al; ADRENAL Trial Investigators and the Australian–New Zealand Intensive Care Society Clinical Trials Group. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018; 378 (09) 797-808
  • 20 Chawla LS, Busse L, Brasha-Mitchell E. et al. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 2014; 18 (05) 534
  • 21 Chawla LS, Russell JA, Bagshaw SM. et al. Angiotensin II for the treatment of high-output shock 3 (ATHOS-3): protocol for a phase III, double-blind, randomised controlled trial. Crit Care Resusc 2017; 19 (01) 43-49
  • 22 Lewis RJ, Angus DC, Laterre PF. et al; Selepressin Evaluation Programme for Sepsis-induced Shock-Adaptive Clinical Trial. Rationale and design of an adaptive phase 2b/3 clinical trial of selepressin for adults in septic shock. Ann Am Thorac Soc 2018; 15 (02) 250-257
  • 23 Russell JA, Vincent JL, Kjølbye AL. et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care 2017; 21 (01) 213
  • 24 Laterre PF, Berry SM, Blemings A. et al; SEPSIS-ACT Investigators. Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock: the SEPSIS-ACT randomized clinical trial. JAMA 2019
  • 25 Gordon AC, Wang N, Walley KR, Ashby D, Russell JA. The cardiopulmonary effects of vasopressin compared with norepinephrine in septic shock. Chest 2012; 142 (03) 593-605
  • 26 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369 (21) 2063
  • 27 Benedict CR, Rose JA. Arterial norepinephrine changes in patients with septic shock. Circ Shock 1992; 38 (03) 165-172
  • 28 Sylvester JT, Scharf SM, Gilbert RD, Fitzgerald RS, Traystman RJ. Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and catecholamines. Am J Physiol 1979; 236 (01) H22-H28
  • 29 Bucher M, Kees F, Taeger K, Kurtz A. Cytokines down-regulate alpha1-adrenergic receptor expression during endotoxemia. Crit Care Med 2003; 31 (02) 566-571
  • 30 Nakada TA, Russell JA, Boyd JH. et al. Beta2-adrenergic receptor gene polymorphism is associated with mortality in septic shock. Am J Respir Crit Care Med 2010; 181 (02) 143-149
  • 31 Nakada TA, Russell JA, Boyd JH. et al. Association of angiotensin II type 1 receptor-associated protein gene polymorphism with increased mortality in septic shock. Crit Care Med 2011; 39 (07) 1641-1648
  • 32 Nakada TA, Russell JA, Wellman H. et al. Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest 2011; 139 (05) 1042-1049
  • 33 Cumming AD, Driedger AA, McDonald JW, Lindsay RM, Solez K, Linton AL. Vasoactive hormones in the renal response to systemic sepsis. Am J Kidney Dis 1988; 11 (01) 23-32
  • 34 Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329 (27) 2002-2012
  • 35 Cobb JP, Danner RL. Nitric oxide and septic shock. JAMA 1996; 275 (15) 1192-1196
  • 36 Zardi EM, Zardi DM, Dobrina A, Afeltra A. Prostacyclin in sepsis: a systematic review. Prostaglandins Other Lipid Mediat 2007; 83 (1-2): 1-24
  • 37 Araújo AV, Ferezin CZ, Rodrigues GJ. et al. Prostacyclin, not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to cecal ligation and perforation (CLP). Vascul Pharmacol 2011; 54 (1-2): 44-51
  • 38 López A, Lorente JA, Steingrub J. et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 2004; 32 (01) 21-30
  • 39 Bernard GR, Wheeler AP, Russell JA. et al; The Ibuprofen in Sepsis Study Group. The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med 1997; 336 (13) 912-918
  • 40 Caironi P, Latini R, Struck J. et al; ALBIOS Study Investigators. Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis. Chest 2017; 152 (02) 312-320
  • 41 Lundberg OH, Bergenzaun L, Rydén J, Rosenqvist M, Melander O, Chew MS. Adrenomedullin and endothelin-1 are associated with myocardial injury and death in septic shock patients. Crit Care 2016; 20 (01) 178
  • 42 Struck J, Hein F, Karasch S, Bergmann A. Epitope specificity of anti-adrenomedullin antibodies determines efficacy of mortality reduction in a cecal ligation and puncture mouse model. Intensive Care Med Exp 2013; 1 (01) 22
  • 43 Wagner K, Wachter U, Vogt JA. et al. Adrenomedullin binding improves catecholamine responsiveness and kidney function in resuscitated murine septic shock. Intensive Care Med Exp 2013; 1 (01) 21
  • 44 Seymour CW, Gesten F, Prescott HC. et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017; 376 (23) 2235-2244
  • 45 Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39 (02) 259-265
  • 46 Genga K, Russell JA. Early liberal fluids for sepsis patients are harmful. Crit Care Med 2016; 44 (12) 2258-2262
  • 47 Genga KR, Russell JA. How much excess fluid impairs outcome of sepsis?. Intensive Care Med 2017; 43 (05) 680-682
  • 48 Corl KA, Prodromou M, Merchant RC. et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med 2019; 47 (07) 951-959
  • 49 Kumar A, Roberts D, Wood KE. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (06) 1589-1596
  • 50 Angus DC. Early, goal-directed therapy for septic shock - a patient-level meta-analysis. N Engl J Med 2017; 377 (10) 995
  • 51 Permpikul C, Tongyoo S, Viarasilpa T, Trainarongsakul T, Chakorn T, Udompanturak S. Early use of norepinephrine in septic shock resuscitation (CENSER). A randomized trial. Am J Respir Crit Care Med 2019; 199 (09) 1097-1105
  • 52 Russell JA, Gordon AC, Walley KR. Early may be better: early low-dose norepinephrine in septic shock. Am J Respir Crit Care Med 2019; 199 (09) 1049-1051
  • 53 Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 2018; 24 (11) 1716-1720
  • 54 Udy AA, Finnis M, Jones D. et al. Incidence, patient characteristics, mode of drug delivery, and outcomes of septic shock patients treated with vasopressors in the arise trial. Shock 2019; 52 (04) 400-407
  • 55 Myburgh JA, Higgins A, Jovanovska A, Lipman J, Ramakrishnan N, Santamaria J. CAT Study investigators. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med 2008; 34 (12) 2226-2234
  • 56 De Backer D, Biston P, Devriendt J. et al; SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010; 362 (09) 779-789
  • 57 Annane D, Vignon P, Renault A. et al; CATS Study Group. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 2007; 370 (9588): 676-684
  • 58 Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 2011; 306 (20) 2248-2254
  • 59 Dargent A, Nguyen M, Fournel I, Bourredjem A, Charles PE, Quenot JP. EPISS study group. Vasopressor cumulative dose requirement and risk of early death during septic shock: an analysis from the EPISS Cohort. Shock 2018; 49 (06) 625-630
  • 60 Brown SM, Lanspa MJ, Jones JP. et al. Survival after shock requiring high-dose vasopressor therapy. Chest 2013; 143 (03) 664-671
  • 61 Kanji HD, McCallum J, Sirounis D, MacRedmond R, Moss R, Boyd JH. Limited echocardiography-guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care 2014; 29 (05) 700-705
  • 62 Wu M, Ghassemi M, Feng M, Celi LA, Szolovits P, Doshi-Velez F. Understanding vasopressor intervention and weaning: risk prediction in a public heterogeneous clinical time series database. J Am Med Inform Assoc 2017; 24 (03) 488-495
  • 63 Bissell BD, Magee C, Moran P, Bastin MLT, Flannery AH. Hemodynamic instability secondary to vasopressin withdrawal in septic shock. J Intensive Care Med 2019; 34 (09) 761-765
  • 64 Hammond DA, McCain K, Painter JT. et al. Discontinuation of vasopressin before norepinephrine in the recovery phase of septic shock. J Intensive Care Med 2019; 34 (10) 805-810
  • 65 Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 2014; 311 (13) 1308-1316
  • 66 Linder A, Fjell C, Levin A, Walley KR, Russell JA, Boyd JH. Small acute increases in serum creatinine are associated with decreased long-term survival in the critically ill. Am J Respir Crit Care Med 2014; 189 (09) 1075-1081
  • 67 Linder A, Guh D, Boyd JH, Walley KR, Anis AH, Russell JA. Long-term (10-year) mortality of younger previously healthy patients with severe sepsis/septic shock is worse than that of patients with nonseptic critical illness and of the general population. Crit Care Med 2014; 42 (10) 2211-2218
  • 68 Linder A, Lee T, Fisher J. et al. Short-term organ dysfunction is associated with long-term (10-Yr) mortality of septic shock. Crit Care Med 2016; 44 (08) e728-e736
  • 69 Schuler A, Wulf DA, Lu Y. et al. The impact of acute organ dysfunction on long-term survival in sepsis. Crit Care Med 2018; 46 (06) 843-849
  • 70 Overgaard CB, Dzavík V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation 2008; 118 (10) 1047-1056
  • 71 Vincent JL, Nielsen ND, Shapiro NI. et al. Mean arterial pressure and mortality in patients with distributive shock: a retrospective analysis of the MIMIC-III database. Ann Intensive Care 2018; 8 (01) 107
  • 72 Maheshwari K, Nathanson BH, Munson SH. et al. The relationship between ICU hypotension and in-hospital mortality and morbidity in septic patients. Intensive Care Med 2018; 44 (06) 857-867
  • 73 Miller AJ, Shifrin A, Kaplan BM, Gold H, Billings A, Katz LN. Arterenol in treatment of shock. J Am Med Assoc 1953; 152 (13) 1198-1201
  • 74 Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One 2015; 10 (08) e0129305
  • 75 Scheeren TWL, Bakker J, De Backer D. et al. Current use of vasopressors in septic shock. Ann Intensive Care 2019; 9 (01) 20
  • 76 Pancaro C, Shah N, Pasma W. et al. Risk of major complications after perioperative norepinephrine infusion through peripheral intravenous lines in a multicenter study. Anesth Analg 2019
  • 77 Menich BE, Miano TA, Patel GP, Hammond DA. Norepinephrine and vasopressin compared with norepinephrine and epinephrine in adults with septic shock. Ann Pharmacother 2019; 53 (09) 877-885
  • 78 Dünser MW, Festic E, Dondorp A. et al; Global Intensive Care Working Group of European Society of Intensive Care Medicine. Recommendations for sepsis management in resource-limited settings. Intensive Care Med 2012; 38 (04) 557-574
  • 79 Barger G, Dale HH. Chemical structure and sympathomimetic action of amines. J Physiol 1910; 41 (1-2): 19-59
  • 80 Trendelenburg U, Muskus A, Fleming WW, GOMEZ ALONSO de la SIERRA B. Modification by reserpine of the action of sympathomimetic amines in spinal cats; a classification of sympathomimetic amines. J Pharmacol Exp Ther 1962; 138: 170-180
  • 81 Trendelenburg U, Muskus A, Fleming WW, de la GOMEZ ALONSO SIERRA B. Effect of cocaine, denervation and decentralization on the response of the nictitating membrane to various sympathomimetic amines. J Pharmacol Exp Ther 1962; 138: 181-193
  • 82 Aviado Jr DM, Wnuck AL, De Beer EJ. Cardiovascular effects of sympathomimetic bronchodilators; epinephrine, ephedrine, pseudoephedrine, isoproterenol, methoxyphenamine and isoprophenamine. J Pharmacol Exp Ther 1958; 122 (03) 406-417
  • 83 Keys A, Violante A. The cardio-circulatory effects in man of neo-synephrin (1-alpha-hydroxy-beta-methylamino-3-hydroxy-ethylbenzene hydrochloride). J Clin Invest 1942; 21 (01) 1-12
  • 84 Hengstmann JH, Goronzy J. Pharmacokinetics of 3H-phenylephrine in man. Eur J Clin Pharmacol 1982; 21 (04) 335-341
  • 85 Morelli A, Ertmer C, Rehberg S. et al. Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care 2008; 12 (06) R143
  • 86 Kukovetz WR, Hess ME, Shanfeld J, Haugaard N. The action of sympathomimetic amines on isometric contraction and phosphorylase activity of the isolated rat heart. J Pharmacol Exp Ther 1959; 127: 122-127
  • 87 Vail E, Gershengorn HB, Hua M, Walkey AJ, Rubenfeld G, Wunsch H. Association between US norepinephrine shortage and mortality among patients with septic shock. JAMA 2017; 317 (14) 1433-1442
  • 88 Allwood MJ, Ginsburg J. Peripheral vascular and other effects of dopamine infusions in man. Clin Sci 1964; 27: 271-281
  • 89 Bennett ED, Tighe D, Wegg W. Abolition, by dopamine blockade, of the natriuretic response produced by lower-body positive pressure. Clin Sci (Lond) 1982; 63 (04) 361-366
  • 90 Juste RN, Panikkar K, Soni N. The effects of low-dose dopamine infusions on haemodynamic and renal parameters in patients with septic shock requiring treatment with noradrenaline. Intensive Care Med 1998; 24 (06) 564-568
  • 91 Holmes CL, Walley KR. Bad medicine: low-dose dopamine in the ICU. Chest 2003; 123 (04) 1266-1275
  • 92 D'Orio V, el Allaf D, Juchmès J, Marcelle R. The use of low doses of dopamine in intensive care medicine. Arch Int Physiol Biochim 1984; 92 (04) S11-S20
  • 93 Olsen NV, Hansen JM, Ladefoged SD, Fogh-Andersen N, Leyssac PP. Renal tubular reabsorption of sodium and water during infusion of low-dose dopamine in normal man. Clin Sci (Lond) 1990; 78 (05) 503-507
  • 94 Yard B, Beck G, Schnuelle P. et al. Prevention of cold-preservation injury of cultured endothelial cells by catecholamines and related compounds. Am J Transplant 2004; 4 (01) 22-30
  • 95 Schnuelle P, Gottmann U, Hoeger S. et al. Effects of donor pretreatment with dopamine on graft function after kidney transplantation: a randomized controlled trial. JAMA 2009; 302 (10) 1067-1075
  • 96 Kotloff RM, Blosser S, Fulda GJ. et al; Society of Critical Care Medicine/American College of Chest Physicians/Association of Organ Procurement Organizations Donor Management Task Force. Management of the potential organ donor in the ICU: Society of Critical Care Medicine/American College of Chest Physicians/Association of Organ Procurement Organizations consensus statement. Crit Care Med 2015; 43 (06) 1291-1325
  • 97 Juste RN, Moran L, Hooper J, Soni N. Dopamine clearance in critically ill patients. Intensive Care Med 1998; 24 (11) 1217-1220
  • 98 Argenziano M, Chen JM, Choudhri AF. et al. Management of vasodilatory shock after cardiac surgery: identification of predisposing factors and use of a novel pressor agent. J Thorac Cardiovasc Surg 1998; 116 (06) 973-980
  • 99 Bomzon L, Rosendorff C. Renovascular resistance and noradrenaline. Am J Physiol 1975; 229 (06) 1649-1653
  • 100 Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 2002; 96 (03) 576-582
  • 101 Lauzier F, Lévy B, Lamarre P, Lesur O. Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med 2006; 32 (11) 1782-1789
  • 102 Russell JA, Wellman H, Walley KR. Vasopressin versus norepinephrine in septic shock: a propensity score matched efficiency retrospective cohort study in the VASST coordinating center hospital. J Intensive Care 2018; 6: 73
  • 103 Nagendran M, Russell JA, Walley KR. et al. Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med 2019; 45 (06) 844-855
  • 104 McIntyre WF, Um KJ, Alhazzani W. et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA 2018; 319 (18) 1889-1900
  • 105 Hajjar LA, Vincent JL, Barbosa Gomes Galas FR. et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: The VANCS randomized controlled trial. Anesthesiology 2017; 126 (01) 85-93
  • 106 He X, Su F, Taccone FS. et al. A selective V(1A) receptor agonist, selepressin, is superior to arginine vasopressin and to norepinephrine in Ovine Septic Shock. Crit Care Med 2016; 44 (01) 23-31
  • 107 Maybauer MO, Maybauer DM, Enkhbaatar P. et al. The selective vasopressin type 1a receptor agonist selepressin (FE 202158) blocks vascular leak in ovine severe sepsis*. Crit Care Med 2014; 42 (07) e525-e533
  • 108 Mizota T, Fujiwara K, Hamada M, Matsukawa S, Segawa H. Effect of arginine vasopressin on systemic and pulmonary arterial pressure in a patient with pulmonary hypertension secondary to pulmonary emphysema: a case report. JA Clin Rep 2017; 3 (01) 1
  • 109 Rehberg S, Yamamoto Y, Sousse L. et al. Selective V(1a) agonism attenuates vascular dysfunction and fluid accumulation in ovine severe sepsis. Am J Physiol Heart Circ Physiol 2012; 303 (10) H1245-H1254
  • 110 Rehberg S, Ertmer C, Vincent JL. et al. Role of selective V1a receptor agonism in ovine septic shock. Crit Care Med 2011; 39 (01) 119-125
  • 111 Rehberg S, Ertmer C, Vincent JL. et al. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit Care Med 2010; 38 (10) 2016-2023
  • 112 Sanyal AJ, Boyer T, Garcia-Tsao G. et al; Terlipressin Study Group. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 2008; 134 (05) 1360-1368
  • 113 Liu ZM, Chen J, Kou Q. et al; Study Group of investigators. Terlipressin versus norepinephrine as infusion in patients with septic shock: a multicentre, randomised, double-blinded trial. Intensive Care Med 2018; 44 (11) 1816-1825
  • 114 Mårtensson J, Gordon AC. Terlipressin or norepinephrine, or both in septic shock?. Intensive Care Med 2018; 44 (11) 1964-1966
  • 115 Senatore F, Jagadeesh G, Rose M. et al. FDA approval of angiotensin II for the treatment of hypotension in adults with distributive shock. Am J Cardiovasc Drugs 2019; 19 (01) 11-20
  • 116 Ham KR, Boldt DW, McCurdy MT. et al. Sensitivity to angiotensin II dose in patients with vasodilatory shock: a prespecified analysis of the ATHOS-3 trial. Ann Intensive Care 2019; 9 (01) 63
  • 117 Düsterdieck G, McElwee G. Estimation of angiotensin II concentration in human plasma by radioimmunoassay. Some applications to physiological and clinical states. Eur J Clin Invest 1971; 2 (01) 32-38
  • 118 Tumlin JA, Murugan R, Deane AM. et al; Angiotensin II for the Treatment of High-Output Shock 3 (ATHOS-3) Investigators. Outcomes in patients with vasodilatory shock and renal replacement therapy treated with intravenous Angiotensin II. Crit Care Med 2018; 46 (06) 949-957
  • 119 Chawla LS, Chen S, Bellomo R, Tidmarsh GF. Angiotensin converting enzyme defects in shock: implications for future therapy. Crit Care 2018; 22 (01) 274
  • 120 du Cheyron D, Fradin S, Ramakers M. et al. Angiotensin converting enzyme insertion/deletion genetic polymorphism: its impact on renal function in critically ill patients. Crit Care Med 2008; 36 (12) 3178-3183
  • 121 Lankadeva YR, Kosaka J, Evans RG, Bellomo R, May CN. Urinary oxygenation as a surrogate measure of medullary oxygenation during angiotensin II therapy in septic acute kidney injury. Crit Care Med 2018; 46 (01) e41-e48
  • 122 Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May CN. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury. Kidney Int 2016; 90 (01) 100-108
  • 123 Gordon AC, Perkins GD, Singer M. et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med 2016; 375 (17) 1638-1648
  • 124 Antcliffe DB, Burnham KL, Al-Beidh F. et al. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am J Respir Crit Care Med 2019; 199 (08) 980-986
  • 125 Davenport EE, Burnham KL, Radhakrishnan J. et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 2016; 4 (04) 259-271
  • 126 Fisher J, Douglas JJ, Linder A, Boyd JH, Walley KR, Russell JA. Elevated plasma angiopoietin-2 levels are associated with fluid overload, organ dysfunction, and mortality in human septic shock. Crit Care Med 2016; 44 (11) 2018-2027
  • 127 Uijl E, Danser AHJ. Renin-angiotensin-aldosterone system parameters as biomarker in heart failure patients with preserved ejection fraction: focus on angiotensinogen. Am J Hypertens 2018; 31 (02) 175-177
  • 128 Emdin M, Fatini C, Mirizzi G. et al. Biomarkers of activation of renin-angiotensin-aldosterone system in heart failure: how useful, how feasible?. Clin Chim Acta 2015; 443: 85-93
  • 129 Zhang W, Chen X, Huang L. et al. Severe sepsis: Low expression of the renin-angiotensin system is associated with poor prognosis. Exp Ther Med 2014; 7 (05) 1342-1348
  • 130 Sprung CL, Annane D, Keh D. et al; CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008; 358 (02) 111-124
  • 131 Venkatesh B, Finfer S, Myburgh J, Cohen J, Billot L. Long-term outcomes of the ADRENAL trial. N Engl J Med 2018; 378 (18) 1744-1745
  • 132 Annane D. Why my steroid trials in septic shock were “positive”. Crit Care Med 2019; 47 (12) 1789-1793
  • 133 Venkatesh B, Cohen J. Why the adjunctive corticosteroid treatment in critically Ill Patients With Septic Shock (ADRENAL) trial did not show a difference in mortality. Crit Care Med 2019; 47 (12) 1785-1788
  • 134 Russell JA, Sevransky J. Toward increased understanding of the steroid controversy in septic shock. Crit Care Med 2019; 47 (12) 1677-1679
  • 135 Aksoy MO, Mardini IA, Yang Y, Bin W, Zhou S, Kelsen SG. Glucocorticoid effects on the beta-adrenergic receptor-adenylyl cyclase system of human airway epithelium. J Allergy Clin Immunol 2002; 109 (03) 491-497
  • 136 Suetrong B, Walley KR. Lactic acidosis in sepsis: it's not all anaerobic: implications for diagnosis and management. Chest 2016; 149 (01) 252-261
  • 137 Dhingra VK, Uusaro A, Holmes CL, Walley KR. Attenuation of lung inflammation by adrenergic agonists in murine acute lung injury. Anesthesiology 2001; 95 (04) 947-953
  • 138 Russell JA, Walley KR, Gordon AC. et al; Dieter Ayers for the Vasopressin and Septic Shock Trial Investigators. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med 2009; 37 (03) 811-818
  • 139 Bauer SR, Lam SW, Cha SS, Oyen LJ. Effect of corticosteroids on arginine vasopressin-containing vasopressor therapy for septic shock: a case control study. J Crit Care 2008; 23 (04) 500-506
  • 140 Lau YC, Lip GYH. Atrial fibrillation during sepsis: a determinant of long-term outcomes?. Chest 2014; 146 (05) 1138-1140
  • 141 Walkey AJ, Quinn EK, Winter MR, McManus DD, Benjamin EJ. Practice patterns and outcomes associated with use of anticoagulation among patients with atrial fibrillation during sepsis. JAMA Cardiol 2016; 1 (06) 682-690
  • 142 Morelli A, Ertmer C, Westphal M. et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013; 310 (16) 1683-1691
  • 143 Lee YR, Seth MS, Soney D, Dai H. Benefits of beta-blockade in sepsis and septic shock: a systematic review. Clin Drug Investig 2019; 39 (05) 429-440
  • 144 Morimatsu H, Uchino S, Chung J, Bellomo R, Raman J, Buxton B. Norepinephrine for hypotensive vasodilatation after cardiac surgery: impact on renal function. Intensive Care Med 2003; 29 (07) 1106-1112
  • 145 Argenziano M, Chen JM, Cullinane S. et al. Arginine vasopressin in the management of vasodilatory hypotension after cardiac transplantation. J Heart Lung Transplant 1999; 18 (08) 814-817
  • 146 Rosenzweig EB, Starc TJ, Chen JM. et al. Intravenous arginine-vasopressin in children with vasodilatory shock after cardiac surgery. Circulation 1999; 100 (19) II182-II186
  • 147 Morales DL, Gregg D, Helman DN. et al. Arginine vasopressin in the treatment of 50 patients with postcardiotomy vasodilatory shock. Ann Thorac Surg 2000; 69 (01) 102-106
  • 148 Morales DL, Garrido MJ, Madigan JD. et al. A double-blind randomized trial: prophylactic vasopressin reduces hypotension after cardiopulmonary bypass. Ann Thorac Surg 2003; 75 (03) 926-930
  • 149 Yimin H, Xiaoyu L, Yuping H, Weiyan L, Ning L. The effect of vasopressin on the hemodynamics in CABG patients. J Cardiothorac Surg 2013; 8: 49
  • 150 Asfar P, Russell JA, Tuckermann J, Radermacher P. Selepressin in septic shock: a step toward decatecholaminization?. Crit Care Med 2016; 44 (01) 234-236
  • 151 Gordon AC, Mason AJ, Perkins GD. et al. The interaction of vasopressin and corticosteroids in septic shock: a pilot randomized controlled trial. Crit Care Med 2014; 42 (06) 1325-1333
  • 152 Dünser MW, Mayr AJ, Ulmer H. et al. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 2003; 107 (18) 2313-2319
  • 153 Levy B, Clere-Jehl R, Legras A. et al; Collaborators. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018; 72 (02) 173-182
  • 154 Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr 2018; 172 (04) 312-314
  • 155 Davis AL, Carcillo JA, Aneja RK. et al. American College of Critical Care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med 2017; 45 (06) 1061-1093
  • 156 Duke T. New WHO guidelines on emergency triage assessment and treatment. Lancet 2016; 387 (10020): 721-724
  • 157 Paul R, Melendez E, Stack A, Capraro A, Monuteaux M, Neuman MI. Improving adherence to PALS septic shock guidelines. Pediatrics 2014; 133 (05) e1358-e1366
  • 158 Paul R, Neuman MI, Monuteaux MC, Melendez E. Adherence to PALS sepsis guidelines and hospital length of stay. Pediatrics 2012; 130 (02) e273-e280
  • 159 Ventura AM, Shieh HH, Bousso A. et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med 2015; 43 (11) 2292-2302
  • 160 Ramaswamy KN, Singhi S, Jayashree M, Bansal A, Nallasamy K. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med 2016; 17 (11) e502-e512
  • 161 Baske K, Saini SS, Dutta S, Sundaram V. Epinephrine versus dopamine in neonatal septic shock: a double-blind randomized controlled trial. Eur J Pediatr 2018; 177 (09) 1335-1342
  • 162 Piva J, Alquati T, Garcia PC, Fiori H, Einloft P, Bruno F. Norepinephrine infusion increases urine output in children under sedative and analgesic infusion. Rev Assoc Med Bras (1992) 2014; 60 (03) 208-215
  • 163 Choong K, Bohn D, Fraser DD. et al; Canadian Critical Care Trials Group. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med 2009; 180 (07) 632-639
  • 164 Baldasso E, Ramos Garcia PC, Piva JP, Einloft PR. Hemodynamic and metabolic effects of vasopressin infusion in children with shock. J Pediatr (Rio J) 2007; 83 (05) S137-S145
  • 165 Yildizdas D, Yapicioglu H, Celik U, Sertdemir Y, Alhan E. Terlipressin as a rescue therapy for catecholamine-resistant septic shock in children. Intensive Care Med 2008; 34 (03) 511-517
  • 166 Papoff P, Caresta E, Versacci P, Pinto R, Moretti C, Midulla F. Beneficial effects of levosimendan in infants with sepsis-associated cardiac dysfunction: report of 2 cases. Pediatr Emerg Care 2012; 28 (10) 1062-1065
  • 167 Rich N, West N, McMaster P, Alexander J. Milrinone in meningococcal sepsis. Pediatr Crit Care Med 2003; 4 (03) 394-395
  • 168 Russell JA. When and how to use predictive biomarkers for corticosteroid treatment of septic shock. Crit Care 2018; 22 (01) 318
  • 169 Douglas JJ, Roussel JA. The role of genomics to identify biomarkers and signaling molecules during severe sepsis. Minerva Anestesiol 2016; 82 (03) 343-358
  • 170 Chawla LS, Ostermann M, Forni L, Tidmarsh GF. Broad spectrum vasopressors: a new approach to the initial management of septic shock?. Crit Care 2019; 23 (01) 124
  • 171 Silversides JA, Fitzgerald E, Manickavasagam US. et al; Role of Active Deresuscitation After Resuscitation (RADAR) Investigators. Deresuscitation of patients with iatrogenic fluid overload is associated with reduced mortality in critical illness. Crit Care Med 2018; 46 (10) 1600-1607
  • 172 Wang Y, Lin H, Lin BW, Lin JD. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care 2019; 9 (01) 58
  • 173 Fowler III AA, Truwit JD, Hite RD. et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA 2019; 322 (13) 1261-1270
  • 174 Hager DN, Hooper MH, Bernard GR. et al. The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) protocol: a prospective, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial. Trials 2019; 20 (01) 197
  • 175 Fujii T, Udy AA, Deane AM. et al; VITAMINS trial investigators. Vitamin C, hydrocortisone and thiamine in patients with septic shock (VITAMINS) trial: study protocol and statistical analysis plan. Crit Care Resusc 2019; 21 (02) 119-125
  • 176 Fujii T, Luethi N, Young PJ. et al; VITAMINS Trial Investigators. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: the VITAMINS randomized clinical trial. JAMA 2020
  • 177 Ginestra JC, Giannini HM, Schweickert WD. et al. Clinician perception of a machine learning-based early warning system designed to predict severe sepsis and septic shock. Crit Care Med 2019; 47 (11) 1477-1484
  • 178 Gordon AC, Russell JA. Innovation and safety in critical care: should we collaborate with the industry? Pro. Intensive Care Med 2018; 44 (12) 2276-2278
  • 179 Stolk RF, van der Poll T, Angus DC, van der Hoeven JG, Pickkers P, Kox M. Potentially inadvertent immunomodulation: norepinephrine use in sepsis. Am J Respir Crit Care Med 2016; 194 (05) 550-558
  • 180 Van den Berghe G, de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996; 24 (09) 1580-1590
  • 181 Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol 2019
  • 182 Russell JA, Walley KR. Vasopressin and its immune effects in septic shock. J Innate Immun 2010; 2 (05) 446-460
  • 183 Morelli A, Ertmer C, Rehberg S. et al. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care 2009; 13 (04) R130
  • 184 Kirov MY, Evgenov OV, Evgenov NV. et al. Infusion of methylene blue in human septic shock: a pilot, randomized, controlled study. Crit Care Med 2001; 29 (10) 1860-1867