CC BY-NC-ND 4.0 · Journal of Clinical Interventional Radiology ISVIR 2020; 4(01): 42-50
DOI: 10.1055/s-0040-1708578
Review Article

Noninvasive Monitoring and Neurointerventional Management of Idiopathic Intracranial Hypertension

Matthew Lang
1   Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
,
Sunu Mathew
1   Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
,
1   Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
,
Juan Tejada
2   Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
,
2   Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
› Author Affiliations

Abstract

Idiopathic intracranial hypertension (IIH) is characterized by isolated rise in intracranial pressure (ICP) leading to chronic, debilitating headaches, tinnitus, and vision loss. Conventional diagnostics and monitoring primarily require the use of invasive procedure like lumbar puncture to measure ICP, while traditional management strategies involve weight reduction and medical treatment with acetazolamide. In an effort to reduce the need for invasive procedures, noninvasive methods of ICP monitoring such as optic nerve sheath diameter measurements and two-depth transcranial Doppler ultrasonography have been developed. In cases of refractory and fulminant IIH, surgical management strategies such as optic nerve sheath fenestration (ONSF), ventriculoperitoneal (VP) and lumboperitoneal (LP) shunting, and transverse venous sinus stenting are used to relieve symptoms via ICP reduction. While ONSF and VP/LP shunting exhibit utility primarily for the treatment of vision loss and headache, respectively, venous sinus stenting may prove to be an effective option in the management of all symptoms of IIH. Most importantly, consideration of the patient’s individual symptoms and values should be taken into account when choosing the optimal surgical management strategy for patients with IIH.



Publication History

Article published online:
29 April 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 McCluskey G, Doherty-Allan R, McCarron P. et al. Meta-analysis and systematic review of population-based epidemiological studies in idiopathic intracranial hypertension. Eur J Neurol 2018; 25 (10) 1218-1227
  • 2 Madriz G Peralta, Cestari DM. An update of idiopathic intracranial hypertension. Curr Opin Ophthalmol 2018; 29 (06) 495-502
  • 3 Chen JJ, Thurtell MJ, Longmuir RA. et al. Causes and prognosis of visual acuity loss at the time of initial presentation in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci 2015; 56 (06) 3850-3859
  • 4 Hatem CF, Yri HM, Sørensen AL, Wegener M, Jensen RH, Hamann S. Long-term visual outcome in a Danish population of patients with idiopathic intracranial hypertension. Acta Ophthalmol 2018; 96 (07) 719-723
  • 5 Yri HM, Wegener M, Sander B, Jensen R. Idiopathic intracranial hypertension is not benign: a long-term outcome study. J Neurol 2012; 259 (05) 886-894
  • 6 Rowe FJ, Sarkies NJ. Assessment of visual function in idiopathic intracranial hypertension: a prospective study. Eye (Lond) 1998; 12 (Pt 1) 111-118
  • 7 Thambisetty M, Lavin PJ, Newman NJ, Biousse V. Fulminant idiopathic intracranial hypertension. Neurology 2007; 68 (03) 229-232
  • 8 McGeeney BE, Friedman DI. Pseudotumor cerebri pathophysiology. Headache 2014; 54 (03) 445-458
  • 9 Farb RI, Vanek I, Scott JN. et al. Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous stenosis. Neurology 2003; 60 (09) 1418-1424
  • 10 Lee SC, Lueck CJ. Cerebrospinal fluid pressure in adults. J Neuroophthalmol 2014; 34 (03) 278-283
  • 11 Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 2013; 81 (13) 1159-1165
  • 12 Wall M, Kupersmith MJ, Kieburtz KD. et al. NORDIC Idiopathic Intracranial Hypertension Study Group. The idiopathic intracranial hypertension treatment trial: clinical profile at baseline. JAMA Neurol 2014; 71 (06) 693-701
  • 13 Handley JD, Baruah BP, Williams DM, Horner M, Barry J, Stephens JW. Bariatric surgery as a treatment for idiopathic intracranial hypertension: a systematic review. Surg Obes Relat Dis 2015; 11 (06) 1396-1403
  • 14 Koc F, Isik MR, Sefi-Yurdakul N. Weight reduction for a better visual outcome in idiopathic intracranial hypertension. Arq Bras Oftalmol 2018; 81 (01) 18-23
  • 15 Subramaniam S, Fletcher WA. Obesity and weight loss in idiopathic intracranial hypertension: a narrative review. J Neuroophthalmol 2017; 37 (02) 197-205
  • 16 NORDIC Idiopathic Intracranial Hypertension Study Group Writing Committee. Wall M, McDermott MP. et al. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 2014; 311 (16) 1641-1651
  • 17 Feldon SE. Visual outcomes comparing surgical techniques for management of severe idiopathic intracranial hypertension. Neurosurg Focus 2007; 23 (05) E6
  • 18 Satti SR, Leishangthem L, Chaudry MI. Meta-analysis of CSF diversion procedures and dural venous sinus stenting in the setting of medically refractory idiopathic intracranial hypertension. AJNR Am J Neuroradiol 2015; 36 (10) 1899-1904
  • 19 Khan MN, Shallwani H, Khan MU, Shamim MS. Noninvasive monitoring intracranial pressure - a review of available modalities. Surg Neurol Int 2017; 8: 51
  • 20 Canakci Y, Koksal O, Durak VA. The value of bedside ocular ultrasound assessment of optic nerve sheath diameter in the detection of increased intracranial pressure in patients presenting to the emergency room with headache. Niger J Clin Pract 2018; 21 (06) 778-782
  • 21 Wang L, Feng L, Yao Y. et al. Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a Chinese population. PLoS One 2015; 10 (02) e0117939
  • 22 Lee SU, Jeon JP, Lee H. et al. Optic nerve sheath diameter threshold by ocular ultrasonography for detection of increased intracranial pressure in Korean adult patients with brain lesions. Medicine (Baltimore) 2016; 95 (41) e5061
  • 23 Amini A, Kariman H, Arhami Dolatabadi A. et al. Use of the sonographic diameter of optic nerve sheath to estimate intracranial pressure. Am J Emerg Med 2013; 31 (01) 236-239
  • 24 Salahuddin N, Mohamed A, Alharbi N. et al. The incidence of increased ICP in ICU patients with non-traumatic coma as diagnosed by ONSD and CT: a prospective cohort study. BMC Anesthesiol 2016; 16 (01) 106
  • 25 Sekhon MS, Griesdale DE, Robba C. et al. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 2014; 40 (09) 1267-1274
  • 26 Geeraerts T, Newcombe VF, Coles JP. et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 2008; 12 (05) R114
  • 27 Ozturk Z, Atalay T, Arhan E. et al. The efficacy of orbital ultrasonography and magnetic resonance imaging findings with direct measurement of intracranial pressure in distinguishing papilledema from pseudopapilledema. Childs Nerv Syst 2017; 33 (09) 1501-1507
  • 28 Vaiman M, Sigal T, Kimiagar I, Bekerman I. Intracranial pressure assessment in traumatic head injury with hemorrhage via optic nerve sheath diameter. J Neurotrauma 2016; 33 (23) 2147-2153
  • 29 Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2011; 37 (07) 1059-1068
  • 30 Ohle R, McIsaac SM, Woo MY, Perry JJ. Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to computed tomography: a systematic review and meta-analysis. J Ultrasound Med 2015; 34 (07) 1285-1294
  • 31 Robba C, Santori G, Czosnyka M. et al. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-alysis. Intensive Care Med 2018; 44 (08) 1284-1294
  • 32 Vaiman M, Sigal T, Kimiagar I, Bekerman I. Noninvasive assessment of the intracranial pressure in non-traumatic intracranial hemorrhage. J Clin Neurosci 2016; 34: 177-181
  • 33 Bekerman I, Sigal T, Kimiagar I, Almer ZE, Vaiman M. Diagnostic value of the optic nerve sheath diameter in pseudotumor cerebri. J Clin Neurosci 2016; 30: 106-109
  • 34 Shofty B, Ben-Sira L, Constantini S, Freedman S, Kesler A. Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol 2012; 33 (02) 366-369
  • 35 Strumwasser A, Kwan RO, Yeung L. et al. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res 2011; 170 (02) 265-271
  • 36 Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004; 62 (01) 45-51, discussion 51
  • 37 Bekerman I, Kimiagar I, Sigal T, Vaiman M. Monitoring of intracranial pressure by CT-defined optic nerve sheath diameter. J Neuroimaging 2016; 26 (03) 309-314
  • 38 Wakerley BR, Kusuma Y, Yeo LL. et al. Usefulness of transcranial Doppler-derived cerebral hemodynamic parameters in the noninvasive assessment of intracranial pressure. J Neuroimaging 2015; 25 (01) 111-116
  • 39 Wang Y, Duan YY, Zhou HY. et al. Middle cerebral arterial flow changes on transcranial color and spectral Doppler sonography in patients with increased intracranial pressure. J Ultrasound Med 2014; 33 (12) 2131-2136
  • 40 Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery 2010; 66 (06) 1050-1057
  • 41 Hanlo PW, Gooskens RH, Nijhuis IJ. et al. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv Syst 1995; 11 (10) 595-603
  • 42 Zweifel C, Czosnyka M, Carrera E. de Riva N, Pickard JD, Smielewski P. Reliability of the blood flow velocity pulsatility index for assessment of intracranial and cerebral perfusion pressures in head-injured patients. Neurosurgery 2012; 71 (04) 853-861
  • 43 Prunet B, Asencio Y, Lacroix G. et al. Noninvasive detection of elevated intracranial pressure using a portable ultrasound system. Am J Emerg Med 2012; 30 (06) 936-941
  • 44 Ragauskas A, Matijosaitis V, Zakelis R. et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology 2012; 78 (21) 1684-1691
  • 45 Koskinen LD, Malm J, Zakelis R, Bartusis L, Ragauskas A, Eklund A. Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique?. J Clin Monit Comput 2017; 31 (02) 459-467
  • 46 Ragauskas A, Bartusis L, Piper I. et al. Improved diagnostic value of a TCD-based non-invasive ICP measurement method compared with the sonographic ONSD method for detecting elevated intracranial pressure. Neurol Res 2014; 36 (07) 607-614
  • 47 Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Siesky B, Harris A. Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma. Acta Ophthalmol 2015; 93 (01) 9-15
  • 48 Kwee RM, Kwee TC. Systematic review and meta-analysis of MRI signs for diagnosis of idiopathic intracranial hypertension. Eur J Radiol 2019; 116: 106-115
  • 49 Ibrahim YA, Mironov O, Deif A, Mangla R, Almast J. Idiopathic intracranial hypertension: diagnostic accuracy of the transverse dural venous sinus attenuation on CT scans. Neuroradiol J 2014; 27 (06) 665-670
  • 50 Lagrèze WA, Gross N, Biermann J, Joachimsen L. [Indications and technique for transconjunctival optic nerve sheath fenestration: video article]. Ophthalmologe 2017; 114 (10) 953-958
  • 51 Moreau A, Lao KC, Farris BK. Optic nerve sheath decompression: a surgical technique with minimal operative complications. J Neuroophthalmol 2014; 34 (01) 34-38
  • 52 Obi EE, Lakhani BK, Burns J, Sampath R. Optic nerve sheath fenestration for idiopathic intracranial hypertension: a seven year review of visual outcomes in a tertiary centre. Clin Neurol Neurosurg 2015; 137: 94-101
  • 53 Yaqub MA, Mehboob MA, Islam QU. Efficacy and safety of optic nerve sheath fenestration in patients with raised intracranial pressure. Pak J Med Sci 2017; 33 (02) 471-475
  • 54 Lai LT, Danesh-Meyer HV, Kaye AH. Visual outcomes and headache following interventions for idiopathic intracranial hypertension. J Clin Neurosci 2014; 21 (10) 1670-1678
  • 55 Tarrats L, Hernández G, Busquets JM. et al. Outcomes of endoscopic optic nerve decompression in patients with idiopathic intracranial hypertension. Int Forum Allergy Rhinol 2017; 7 (06) 615-623
  • 56 Nicholson P, Brinjikji W, Radovanovic I. et al. Venous sinus stenting for idiopathic intracranial hypertension: a systematic review and meta-analysis. J Neurointerv Surg 2019; 11 (04) 380-385
  • 57 Starke RM, Wang T, Ding D. et al. Endovascular treatment of venous sinus stenosis in idiopathic intracranial hypertension: complications, neurological outcomes, and radiographic results. ScientificWorldJournal 2015; 2015: 140408
  • 58 Puffer RC, Mustafa W, Lanzino G. Venous sinus stenting for idiopathic intracranial hypertension: a review of the literature. J Neurointerv Surg 2013; 5 (05) 483-486
  • 59 Gilbert AL, Chwalisz B, Mallery R. Complications of optic nerve sheath fenestration as a treatment for idiopathic intracranial hypertension. Semin Ophthalmol 2018; 33 (01) 36-41
  • 60 Robinson ME, Moreau A, OʼMeilia R. et al. The relationship between optic nerve sheath decompression failure and intracranial pressure in idiopathic intracranial hypertension. J Neuroophthalmol 2016; 36 (03) 246-251
  • 61 Bjornson A, Tapply I, Nabbanja E. et al. Ventriculo-peritoneal shunting is a safe and effective treatment for idiopathic intracranial hypertension. Br J Neurosurg 2019; 33 (01) 62-70
  • 62 Menger RP, Connor Jr DE, Thakur JD. et al. A comparison of lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension: an analysis of economic impact and complications using the Nationwide Inpatient Sample. Neurosurg Focus 2014; 37 (05) E4
  • 63 Azad TD, Zhang Y, Varshneya K, Veeravagu A, Ratliff JK, Li G. Lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension demonstrate comparable failure and complication rates. Neurosurgery 2019; •••: nyz080
  • 64 Huang LC, Winter TW, Herro AM. et al. Ventriculoperitoneal shunt as a treatment of visual loss in idiopathic intracranial hypertension. J Neuroophthalmol 2014; 34 (03) 223-228
  • 65 Alkherayf F, Abou Al-Shaar H, Awad M. Management of idiopathic intracranial hypertension with a programmable lumboperitoneal shunt: early experience. Clin Neurol Neurosurg 2015; 136: 5-9
  • 66 Nadkarni TD, Rekate HL, Wallace D. Concurrent use of a lumboperitoneal shunt with programmable valve and ventricular access device in the treatment of pseudotumor cerebri: review of 40 cases. J Neurosurg Pediatr 2008; 2 (01) 19-24
  • 67 Koovor JM, Lopez GV, Riley K, Tejada J. Transverse venous sinus stenting for idiopathic intracranial hypertension: Safety and feasibility. Neuroradiol J 2018; 31 (05) 513-517
  • 68 Matloob SA, Toma AK, Thompson SD. et al. Effect of venous stenting on intracranial pressure in idiopathic intracranial hypertension. Acta Neurochir (Wien) 2017; 159 (08) 1429-1437
  • 69 Patsalides A, Oliveira C, Wilcox J. et al. Venous sinus stenting lowers the intracranial pressure in patients with idiopathic intracranial hypertension. J Neurointerv Surg 2019; 11 (02) 175-178
  • 70 Ahmed RM, Zmudzki F, Parker GD, Owler BK, Halmagyi GM. Transverse sinus stenting for pseudotumor cerebri: a cost comparison with CSF shunting. AJNR Am J Neuroradiol 2014; 35 (05) 952-958
  • 71 Goodwin CR, Elder BD, Ward A. et al. Risk factors for failed transverse sinus stenting in pseudotumor cerebri patients. Clin Neurol Neurosurg 2014; 127: 75-78
  • 72 Kumpe DA, Bennett JL, Seinfeld J, Pelak VS, Chawla A, Tierney M. Dural sinus stent placement for idiopathic intracranial hypertension. J Neurosurg 2012; 116 (03) 538-548
  • 73 Rohr A, Dörner L, Stingele R, Buhl R, Alfke K, Jansen O. Reversibility of venous sinus obstruction in idiopathic intracranial hypertension. AJNR Am J Neuroradiol 2007; 28 (04) 656-659
  • 74 Ducruet AF, Crowley RW, McDougall CG, Albuquerque FC. Long-term patency of venous sinus stents for idiopathic intracranial hypertension. J Neurointerv Surg 2014; 6 (03) 238-242
  • 75 Li K, Ren M, Meng R. et al. Efficacy of stenting in patients with cerebral venous sinus thrombosis-related cerebral venous sinus stenosis. J Neurointerv Surg 2019; 11 (03) 307-312
  • 76 He CZ, Ji XM, Wang LJ. et al. [Endovascular treatment for venous sinus stenosis in idiopathic intracranial hypertension]. Zhonghua Yi Xue Za Zhi 2012; 92 (11) 748-751