Subscribe to RSS
DOI: 10.1055/s-0040-1708502
Recent Progress in Hydrogen-Bonded π-Conjugated Systems Displaying J-Type Aggregates
Funding Information LabEx Emerging Investigators Grant 2018 from the Fondation pour la Recherche en Chimie.Publication History
Received: 26 December 2019
Accepted after revision: 10 February 2020
Publication Date:
30 March 2020 (online)
Abstract
Supramolecular approaches are of great interest in the design of functional materials. The types of aggregates arising from different noncovalent interactions endow materials with intriguing properties. In this sense, J-type aggregates are very attractive due to their unique optical properties and capacity to transport excitons. These features make them great candidates in the design of materials for organic electronic devices. Furthermore, the incorporation of additional hydrogen-bonding functionalities provides J-aggregates with superior directionality and connection among the different π-conjugated cores. The control over the formation of H-bonds to achieve functional aggregates is therefore a promising strategy towards controlled structures with specific functions.
This review outlines the most relevant and recent works of π-conjugated systems exhibiting J-type aggregates resulting from hydrogen-bonding interactions. Different types of hydrogen-bonding functionalities will be discussed together with their roles in the aggregate properties, their impact in the optoelectronic properties, the self-assembly mechanisms, and their applications in organic electronics.
-
References
- 1 Lehn J-M. Angew. Chem. Int. Ed. 1988; 27: 89
- 2 Lehn J-M. Eur. Rev. 2009; 17: 263
- 3 Lehn J-M. Angew. Chem. Int. Ed. 1990; 29: 1304
- 4 Fyfe MC. T, Stoddart JF. Acc. Chem. Res. 1997; 30: 393
- 5 Stupp SI, Palmer LC. Chem. Mater. 2014; 26: 507
- 6 Wong K-T, Bassani DM. NPG Asia Mater. 2014; 6: e116
- 7 González-Rodríguez D, Schenning AP. H. J. Chem. Mater. 2011; 23: 310
- 8 Steiner T. Angew. Chem. Int. Ed. 2002; 41: 49
- 9 Prins LJ, Reinhoudt DN, Timmerman P. Angew. Chem. Int. Ed. 2001; 40: 2382
- 10 Gospodinova N, Tomšík E. Prog. Polym. Sci. 2015; 43: 33
- 11 Schenning AP. H. J, , V Herrikhuyzen J, Jonkheijm P, Chen Z, Würthner F, Meijer EW. J. Am. Chem. Soc. 2002; 124: 10252
- 12 Schoonbeek FS, van Esch JH, Wegewijs B, Rep DB. A, Haas Md. e, Klapwijk TM, Kellogg RM, Feringa BL. Angew. Chem. Int. Ed. 1999; 38: 1393
- 13 Würthner F, Thalacker C, Sautter A. Adv. Mater. 1999; 11: 754
- 14 Bohanon TM, Denzinger S, Fink R, Paulus W, Ringsdorf H, Weck M. Angew. Chem. Int. Ed. 1995; 34: 58
- 15 Jelley EE. Nature 1937; 139: 631
- 16 Scheibe G. Angew. Chem. 1937; 50: 212
- 17 Bücher H, Kuhn H. Chem. Phys. Lett. 1970; 6: 183
- 18 Knoester J, Agranovich VM. Frenkel and charge-transfer excitons in organic solids. In: Thin Films and Nanostructures. Academic Press. Amsterdam: 2003: 1-96 (Internet: http://www.sciencedirect.com/science/article/pii/S1079405003310014 )
- 19 Hestand NJ, Spano FC. Chem. Rev. 2018; 118: 7069
- 20 Shirakawa M, Kawano S, Fujita N, Sada K, Shinkai S. J. Org. Chem. 2003; 68: 5037
- 21 Tani T. Imaging Sci. J. 2007; 55: 65
- 22 Kawaguchi T, Iwata K. Thin Solid Films 1990; 191: 173
- 23 Paternò GM, Moretti L, Barker AJ, D'Andrea C, Luzio A, Barbero N, Galliano S, Barolo C, Lanzani G, Scotognella F. J. Mater. Chem. C 2017; 5: 7732
- 24 Kaiser TE, Stepanenko V, Würthner F. J. Am. Chem. Soc. 2009; 131: 6719
- 25 Würthner F, Thalacker C, Diele S, Tschierske C. Chem. Eur. J. 2001; 7: 2245
- 26 Crusats J, El-Hachemi Z, Escudero C, Ribó JM. J. Porphyrins Phthalocyanines 2009; 13: 461
- 27 Song Q, Jiao Y, Wang Z, Zhang X. Small 2016; 12: 24
- 28 Zhou Y, Guzman CX, Helguero-Kelley LC, Liu C, Peurifoy SR, Captain B, Braunschweig AB. J. Phys. Org. Chem. 2016; 29: 689
- 29 Ruiz-Carretero A, Rovelo NRÁ, Militzer S, Mésini PJ. J. Mater. Chem. A 2019; 7: 23451
- 30 Löhner A, Kunsel T, Röhr MI. S, Jansen TL. C, Sengupta S, Würthner F, Knoester J, Köhler J. J. Phys. Chem. Lett. 2019; 10: 2715
- 31 Brixner T, Hildner R, Köhler J, Lambert C, Würthner F. Adv. Energy Mater. 2017; 7: 1700236
- 32 Egawa Y, Hayashida R, Anzai J. Langmuir 2007; 23: 13146
- 33 Fidder H, Terpstra J, Wiersma DA. J. Chem. Phys. 1991; 94: 6895
- 34 Ghosh PN. Solid State Commun. 1976; 19: 639
- 35 Scheblykin IG, Bataiev MM, Van der Auweraer M, Vitukhnovsky AG. Chem. Phys. Lett. 2000; 316: 37
- 36 Scheblykin IG, Sliusarenko OY, Lepnev LS, Vitukhnovsky AG, Van der Auweraer M. J. Phys. Chem. B 2001; 105: 4636
- 37 Dahlbom M, Pullerits T, Mukamel S, Sundström V. J. Phys. Chem. B 2001; 105: 5515
- 38 Kühn O, Sundström V, Pullerits T. Chem. Phys. 2002; 275: 15
- 39 Lin H, Camacho R, Tian Y, Kaiser TE, Würthner F, Scheblykin IG. Nano Lett. 2010; 10: 620
- 40 Würthner F, Kaiser TE, Saha-Möller CR. Angew. Chem. Int. Ed. 2011; 50: 3376
- 41 Spano FC. Acc. Chem. Res. 2010; 43: 429
- 42 Más-Montoya M, Janssen RA. J. Adv. Funct. Mater. 2017; 27: 1605779
- 43 Zhong C, Bialas D, Spano FC. J. Phys. Chem. C 2020; 124: 2146
- 44 Johansson A, Kollman P, Rothenberg S, McKelvey J. J. Am. Chem. Soc. 1974; 96: 3794
- 45 Tsai W-W, Tevis ID, Tayi AS, Cui H, Stupp SI. J. Phys. Chem. B 2010; 114: 14778
- 46 Tevis ID, Tsai W-W, Palmer LC, Aytun T, Stupp SI. ACS Nano 2012; 6: 2032
- 47 Ghosh S, Cherumukkil S, Suresh CH, Ajayaghosh A. Adv. Mater. 2017; 29: 1703783
- 48 Ghosh S, Das S, Saeki A, Praveen VK, Seki S, Ajayaghosh A. ChemNanoMat 2018; 4: 831
- 49 Kaneko R, Chowdhury TH, Sugawa K, Lee J-J, Otsuki J, Islam A. Sol. Energy 2019; 194: 248
- 50 Würthner F. Chem. Commun. 2004; 14: 1564
- 51 Ghosh S, Li X-Q, Stepanenko V, Würthner F. Chem. Eur. J. 2008; 14: 11343
- 52 Wagner W, Wehner M, Stepanenko V, Ogi S, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 16008
- 53 Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. J. Am. Chem. Soc. 2015; 137: 3300
- 54 Ogi S, Stepanenko V, Thein J, Würthner F. J. Am. Chem. Soc. 2016; 138: 670
- 55 Marciniak H, Li X-Q, Würthner F, Lochbrunner S. J. Phys. Chem. A 2011; 115: 648
- 56 Wolter S, Aizezers J, Fennel F, Seidel M, Würthner F, Kühn O, Lochbrunner S. New J. Phys. 2012; 14: 105027
- 57 Wolter S, Westphal KM, Hempel M, Würthner F, Kühn O, Lochbrunner S. J. Phys. B: At. Mol. Opt. Phys. 2017; 50: 184005
- 58 Fennel F, Wolter S, Xie Z, Plötz P-A, Kühn O, Würthner F, Lochbrunner S. J. Am. Chem. Soc. 2013; 135: 18722
- 59 Ogi S, Fukaya N, , Arifin, Skjelstad BB, Hijikata Y, Yamaguchi S. Chem. Eur. J. 2019; 25: 7303
- 60 Zou Q, Liu K, Abbas M, Yan X. Adv. Mater. 2016; 28: 1031
- 61 Smith KH, Tejeda-Montes E, Poch M, Mata A. Chem Soc Rev 2011; 40: 4563
- 62 Sun Y, Jiang L, Schuermann KC, Adriaens W, Zhang L, Boey FY. C, De Cola L, Brunsveld L, Chen X. Chem. Eur. J. 2011; 17: 4746
- 63 Kumar RJ, MacDonald JM, Singh TB, Waddington LJ, Holmes AB. J. Am. Chem. Soc. 2011; 133: 8564
- 64 Jintoku H, Sagawa T, Miyamoto K, Takafuji M, Ihara H. Chem. Commun. 2010; 46: 7208
- 65 Koti AS. R, Periasamy N. Chem. Mater. 2003; 15: 369
- 66 Kim JH, Lee M, Lee JS, Park CB. Angew. Chem. Int. Ed. 2012; 51: 517
- 67 Xue B, Li Y, Yang F, Zhang C, Qin M, Cao Y, Wang W. Nanoscale 2014; 6: 7832
- 68 Kim JH, Nam DH, Lee YW, Nam YS, Park CB. Small 2014; 10: 1272
- 69 Smith AM, Williams RJ, Tang C, Coppo P, Collins RF, Turner ML, Saiani A, Ulijn RV. Adv. Mater. 2008; 20: 37
- 70 Shimizu LS, Smith MD, Hughes AD, Shimizu KD. Chem. Commun. 2001; 1592
- 71 Shimizu LS, Salpage SR, Korous AA. Acc. Chem. Res. 2014; 47: 2116
- 72 Simic V, Bouteiller L, Jalabert M. J. Am. Chem. Soc. 2003; 125: 13148
- 73 Isare B, Pensec S, Raynal M, Bouteiller L. C. R. Chim. 2016; 19: 148
- 74 Das A, Ghosh S. Chem. Eur. J. 2010; 16: 13622
- 75 Liu Y, Liu L, Zhu E, Yue M, Gao C, Wu X, Che G, Liu H. ChemPlusChem 2018; 83: 1109
- 76 Shoji S, Ogawa T, Hashishin T, Tamiaki H. ChemPhysChem 2018; 19: 913
- 77 Shoji S, Ogawa T, Matsubara S, Tamiaki H. Sci. Rep. 2019; 9: 14006
- 78 Kar H, Gehrig DW, Allampally NK, Fernández G, Laquai F, Ghosh S. Chem. Sci. 2016; 7: 1115
- 79 Yagai S, Kitamoto Y, Datta S, Adhikari B. Acc. Chem. Res. 2019; 52: 1325
- 80 Yagai S, Goto Y, Lin X, Karatsu T, Kitamura A, Kuzuhara D, Yamada H, Kikkawa Y, Saeki A, Seki S. Angew. Chem. Int. Ed. 2012; 51: 6643
- 81 Adhikari B, Yamada Y, Yamauchi M, Wakita K, Lin X, Aratsu K, Ohba T, Karatsu T, Hollamby MJ, Shimizu N, Takagi H, Haruki R, Adachi S, Yagai S. Nat. Commun. 2017; 8: 15254
- 82 Iwaura R, Ohnishi-Kameyama M, Iizawa T. Chem. Eur. J. 2009; 15: 3729
- 83 Mandal S, Zhou X, Lin S, Yan H, Woodbury N. Bioconjugate Chem. 2019; 30: 1870
- 84 Banal JL, Kondo T, Veneziano R, Bathe M, Schlau-Cohen GS. J. Phys. Chem. Lett. 2017; 8: 5827
- 85 Boulais É, Sawaya NP. D, Veneziano R, Andreoni A, Banal JL, Kondo T, Mandal S, Lin S, Schlau-Cohen GS, Woodbury NW, Yan H, Aspuru-Guzik A, Bathe M. Nat. Mater. 2018; 17: 159
- 86 Markova LI, Malinovskii VL, Patsenker LD, Häner Rv. s. Chem. Commun. 2013; 49: 5298
- 87 Zhou Y, Guzman CX, Helguero-Kelley LC, Liu C, Peurifoy SR, Captain B, Braunschweig AB. J. Phys. Org. Chem. 2016; 29: 689
- 88 Levine AM, Schierl C, Basel BS, Ahmed M, Camargo BA, Guldi DM, Braunschweig AB. J. Phys. Chem. C 2019; 123: 1587
- 89 Villari V, Mineo P, Scamporrino E, Micali N. RSC Adv. 2012; 2: 12989
- 90 Militzer S, Tran TM. P, Mésini PJ, Ruiz-Carretero A. ChemNanoMat 2018; 4: 790
- 91 Herbst S, Soberats B, Leowanawat P, Lehmann M, Würthner F. Angew. Chem. Int. Ed. 2017; 56: 2162
- 92 Herbst S, Soberats B, Leowanawat P, Stolte M, Lehmann M, Würthner F. Nat. Commun. 2018; 9: 2646
- 93 Hecht M, Schlossarek T, Stolte M, Lehmann M, Würthner F. Angew. Chem. Int. Ed. 2019; 58: 12979