Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(10): 959-964
DOI: 10.1055/s-0040-1708010
DOI: 10.1055/s-0040-1708010
letter
Oxidative Rearrangement via 1,2-Aryl Migration using Hydroxy(tosyloxy)iodobenzene in a Polar Aprotic Solvent
R.K. acknowledges financial assistance as a minor research project from Kurukshetra University (File No. DPA-1/32/13/ARA/3075-78). S.S. thanks the Science and Engineering Research Board (SERB), a statutory body of the Department of Science & Technology (DST), Government of India, for financial assistance under the Young Scientist Scheme (File No. YSS/2014/000555).Further Information
Publication History
Received: 06 January 2020
Accepted after revision: 08 March 2020
Publication Date:
27 March 2020 (online)
Abstract
A series of geminal β,β-ditosyloxy ketones were synthesized in moderate to good yields through hydroxy(tosyloxy)iodobenzene-mediated ditosyloxylation of readily accessible α,β-unsaturated ketones in a polar aprotic solvent. A mechanism has been proposed for the synthesis of the geminal β,β-ditosyloxy ketones, and entails an oxidative rearrangement involving a 1,2-aryl migration.
Key words
aryl migration - ditosyloxylation - ditosyloxy ketones - hypervalent iodine - rearrangementSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1708010.
- Supporting Information
-
References and Notes
- 1 Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 2 Parra A, Reboredo S. Chem. Eur. J. 2013; 19: 17244
- 3 Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 4 Yoshimura A, Yusubov MS, Zhdankin VV. Org. Biomol. Chem. 2016; 14: 4771
- 5 Kupper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW. III, Lu Z, Jonsson M, Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
- 6 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 7 Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
- 8 Ochiai M. Top. Curr. Chem. 2003; 224: 5
- 9 Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157
- 10 Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
- 11 Mizar P, Wirth T. Angew. Chem. Int. Ed. 2014; 53: 5993
- 12 Kamal R, Kumar V, Kumar R. Chem. Asian J. 2016; 11: 1988
- 13 Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
- 14 Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chénedé A. Angew. Chem. Int. Ed. 2009; 48: 4605
- 15 Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
- 16 Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 17 Moreno I, Tellitu I, Herrero MT, SanMartin R, Dominguez E. Curr. Org. Chem. 2002; 6: 1433
- 18 Silva LF. Jr. Molecules 2006; 11: 421
- 19 Wengryniuk SE, Canesi S. In Patai’s Chemistry of Functional Groups: The Chemistry of Hypervalent Halogen Compounds . Marek I, Olofsson B, Rappoport Z. Wiley; Chichester: 2019. Chap. 14; 665
- 20 Peng Z, Zhao Y, Liu H, Li C, Zhao J. J. Org. Chem. 2017; 82: 11848
- 21 Banik SM, Medley JM, Jacobsen EN. Science 2016; 353: 51
- 22 Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X.-S. J. Am. Chem. Soc. 2018; 140: 15206
- 23 Ehara T, Yokoyama H, Ono M. Heterocycles 2007; 71: 627
- 24 Ehara T, Tanikawa S, Ono M, Akita H. Chem. Pharm. Bull. 2007; 55: 1361
- 25 Nakamura K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2017; 56: 182
- 26 Pei T, Chen C.-y, Dormer PG, Davies IW. Angew. Chem. Int. Ed. 2008; 47: 4231
- 27 Liu L, Zhang T, Yang Y.-F, Zhang-Negrerie D, Zhang X, Du Y, Wu Y.-D, Zhao K. J. Org. Chem. 2016; 81: 4058
- 28 Ulmer A, Brunner C, Arnold AM, Pöthig A, Gulder T. Chem. Eur. J. 2016; 22: 3660
- 29 He Z, Shrives HJ, Fernández-Salas JA, Abengózar A, Neufeld J, Yang K, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 5759
- 30 Song Z.-L, Fan C.-A, Tu Y.-Q. Chem. Rev. 2011; 111: 7523
- 31 Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
- 32 Giordano C, Castaldi G, Uggeri F. Angew. Chem. Int. Ed. 1984; 23: 413
- 33 Snead DR, Jamison TF. Angew. Chem. Int. Ed. 2015; 54: 983
- 34 Sonawane H, Nanjundiah B, Kulkarni D, Ahuja J. Tetrahedron: Asymmetry 1991; 2: 251
- 35 Ono M, Tanikawa S, Suzuki K, Akita H. Tetrahedron 2004; 60: 10187
- 36 Moriarty RM, Prakash O. Org. React. (N. Y.) 2004; 54: 273
- 37 Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
- 38 Moriarty RM, Khosrowshahi JS, Prakash O. Tetrahedron Lett. 1985; 26: 2961
- 39 2-(4-Methoxyphenyl)-3-(4-methylphenyl)-3-oxopropane-1,1-diyl Ditosylate (2a); Typical Procedure HTIB (3.136 g, 0.008 mol, 2 equiv) was added to a solution of chalcone 1a (1.008 g, 0.004 mol) in CH2Cl2 (30 mL), and the mixture was stirred at 40–42 °C. The HTIB, which was insoluble in CH2Cl2, gradually disappeared as the reaction proceeded. Stirring was continued for about 40 h, and then the solvent was evaporated in vacuo. The resulting gummy mass was triturated with PE (60–80 °C; 3 × 20 mL) to remove PhI. The white solid was then thoroughly washed with water (2 × 30 mL) to remove the TsOH byproduct and crystallized from MeCN; yield: 1.8 g (76%). 2a (Powdered Form) White solid; mp 136–138 °C. IR (KBr): 1666 cm–1 (CO stretch). 1H NMR (400 MHz, CDCl3): δ = 7.76–7.78 (d, J = 8.4 Hz, 2 H), 7.59–7.62 (d, J = 8.3 Hz, 2 H), 7.41–7.43 (d, J = 8.4 Hz, 2 H), 7.24–7.26 (d, J = 7.4 Hz, 2 H), 7.07–7.13 (m, 6 H), 6.95–6.98 (d, J = 8.1 Hz, 1 H), 6.62–6.64 (d, J = 8.8 Hz, 2 H), 4.95–4.97 (d, J = 8.1 Hz, 1 H), 3.72 (s, 3 H), 2.40 (s, 3 H), 2.39 (s, 3 H), 2.31 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 193.96, 159.66, 144.94, 144.69, 144.45, 133.62, 133.13, 133.00, 130.47, 129.46, 129.22, 128.80, 128.27, 127.91, 123.42, 114.41, 99.69, 56.86, 55.11, 21.70, 21.65, 21.63. HRMS (ESI): m/z calcd [M + H]+ for C31H31O8S2: 595.7003; found: 595.6971. 2a (Single Crystal) Crystalline white solid; spectroscopic data matched those of the powdered form.
- 40 CCDC 1862569 and 1862571 contain supplementary crystallographic data for crystals of compound 2a obtained from MeCN and from MeCN with traces of Et3N, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 41 Rebrovic L, Koser GF. J. Org. Chem. 1984; 49: 2462
- 42 Kamal R, Sharma D, Wadhwa D, Prakash O. Synlett 2012; 23: 93
- 43 Prakash O, Sharma D, Kamal R, Kumar R, Nair RR. Tetrahedron 2009; 65: 10175
- 44 Prakash O, Kumar R, Sharma D, Pannu K, Kamal R. Synlett 2007; 2189
- 45 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision E.01. Gaussian, Inc; Wallingford: 2016
- 46 Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J. Phys. Chem. 1994; 98: 11623
- 47 Becke AD. J. Chem. Phys. 1993; 98: 5648
- 48 Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
- 49 Ollis W, Ormand K, Redman B, Roberts R, Sutherland I. J. Chem. Soc. C 1970; 125
- 50 Ollis W, Ormand K, Sutherland I. J. Chem. Soc. C 1970; 119
- 51 Ollis WD, Ormand KL, Sutherland IO. Chem. Commun. 1968; 1237
- 52 Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
- 53 Koser GF, Wettach RH, Troup JM, Frenz BA. J. Org. Chem. 1976; 41: 3609