Subscribe to RSS
DOI: 10.1055/s-0040-1707855
C–H Functionalization Strategies in the Naphthalene Series: Site Selections and Functional Diversity
The authors thank the Ministère de l’Enseignement Supérieur et de la Recherche (French Ministry of Superior Education) for a Ph.D. fellowship (B.L.) and the Agence Nationale de la Recherche (French National Research Agency) (Grant. No CHARMMMAT ANR-11-LABX-0039). Université de Versailles Saint-Quentin, Université Paris-Saclay and the Centre National de la Recherche Scientifique (CNRS) are gratefully acknowledged for their financial support.Publication History
Received: 06 April 2020
Accepted after revision: 06 May 2020
Publication Date:
17 June 2020 (online)
Abstract
Naphthalene is certainly not a common arene. In contrast to benzene, the bicyclic feature of naphthalene offers multiple differentiable positions and thus a broad diversity of substitution patterns. Naphthalene is a central building block for the construction of elaborated polycyclic architectures with applications in broad domains such as life and materials sciences. As a result, C–H functionalization strategies specially designed for naphthalene substrates have become essential to install valuable substituents on one or both rings towards polysubstituted naphthalenes. This short review provides a focus on uncommon substitution patterns; however, classical ortho C–H activation is not covered.
1 Introduction
2 C–H Functionalization Using a Directing Group Located at Position 1
2.1 Functionalization on the Ring Bearing the DG: 1,3-Substitution Pattern
2.2 Functionalization on the Ring Bearing the DG: 1,4-Substitution Pattern
2.3 Functionalization on the Neighboring Ring: 1,6-, 1,7- and 1,8-Substitution Patterns
3 C–H Functionalization Using a Directing Group Located at Position 2
3.1 Functionalization on the Ring Bearing the DG: 2,4- and 2,1-Substitution Patterns
3.2 Miscellaneous Substitution Patterns
4 Bis C–H Functionalization
4.1 Symmetrical Bisfunctionalization: 1,2,8-Substitution Pattern
4.2 Symmetrical Bisfunctionalization: 2,3,1-Substitution Pattern
4.2 Unsymmetrical Bisfunctionalization: 2,3,1-Substitution Pattern
4.3 Symmetrical Bisfunctionalization: 2,4,8-Substitution Pattern
5 Conclusion and Outlook
-
References
- 1 Jiang P, Li F, Xu Y, Liu Q, Wang J, Ding H, Yu R, Wang Q. Org. Lett. 2015; 17: 5918
- 2 Geuenich D, Hess K, Köhler F, Herges R. Chem. Rev. 2005; 105: 3758
- 3 Durward W, Cruickshank J, Sparks RA. Proc. R. Soc. London. Ser. A. 1960; 258: 270
- 4 Pieters G, Terrasson V, Gaucher A, Prim D, Marrot J. Eur. J. Org. Chem. 2010; 5800
- 5 Judge DK, Haycock P, Richardson RD, Fuchter MJ. Synlett 2013; 24: 2365
- 6 Pieters G, Gaucher A, Marrot J, Maurel F, Naubron JV, Jean M, Vanthuyne N, Crassous J, Prim D. Org. Lett. 2011; 13: 4450
- 7 Boufroura H, Souibgui A, Gaucher A, Marrot J, Pieters G, Aloui F, Ben Hassine B, Clavier G, Prim D. Org. Biomol. Chem. 2015; 13: 10844
- 8 Boufroura H, Poyer S, Gaucher A, Huin C, Salpin J.-Y, Clavier G, Prim D. Chem. Eur. J. 2018; 24: 8656
- 9 Pieters G, Sbargoud K, Bridoux A, Gaucher A, Marque S, Bourdreux F, Marrot J, Flot D, Wantz G, Dautel O, Prim D. Eur. J. Org. Chem. 2013; 490
- 10 Pieters G, Gaucher A, Prim D, Besson T, Giner Planas J, Teixidor F, Viñas C, Light ME, Hursthouse MB. Chem. Commun. 2011; 47: 7725
- 11 Pieters G, Gaucher A, Marque S, Maurel F, Lesot P, Prim D. J. Org. Chem. 2010; 75: 2096
- 12 Pieters G, Gaucher A, Prim D, Marrot J. Chem. Commun. 2009; 9: 4827
- 13 Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
- 14 Large B, Gigant N, Joseph D, Clavier G, Prim D. Eur. J. Org. Chem. 2019; 1835
- 15 Liang L, Liu X. Chem 2017; 2: 331
- 16 Ros A, Estepa B, Ramírez-López P, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2013; 135: 15730
- 17 Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
- 18 Lautens M, Piguel S. Angew. Chem. Int. Ed. 2000; 39: 1045
- 19 Ye J, Lautens M. Nat. Chem. 2015; 7: 863
- 20 Della Ca’ N, Fontana M, Motti E, Catellani M. Acc. Chem. Res. 2016; 49: 1389
- 21 Wang J, Dong G. Chem. Rev. 2019; 119: 7478
- 22 Shen PX, Wang XC, Wang P, Zhu RY, Yu JQ. J. Am. Chem. Soc. 2015; 137: 11574
- 23 Wang XC, Gong W, Fang LZ, Zhu RY, Li S, Engle KM, Yu JQ. Nature 2015; 519: 334
- 24 Wang P, Farmer ME, Yu JQ. Angew. Chem. Int. Ed. 2017; 56: 5125
- 25 Wang P, Farmer ME, Huo X, Jain P, Shen PX, Ishoey M, Bradner JE, Wisniewski SR, Eastgate MD, Yu JQ. J. Am. Chem. Soc. 2016; 138: 9269
- 26 Li GC, Wang P, Farmer ME, Yu JQ. Angew. Chem. Int. Ed. 2017; 56: 6874
- 27 Wang P, Li GC, Jain P, Farmer ME, He J, Shen PX, Yu JQ. J. Am. Chem. Soc. 2016; 138: 14092
- 28 Jin Z, Chu L, Chen Y.-Q, Yu J.-Q. Org. Lett. 2018; 20: 425
- 29 Dai HX, Li G, Zhang XG, Stepan AF, Yu JQ. J. Am. Chem. Soc. 2013; 135: 7567
- 30 Mi R.-J, Sun Y.-Z, Wang J.-Y, Sun J, Xu Z, Zhou M.-D. Org. Lett. 2018; 20: 5126
- 31 Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
- 32 Chu L, Shang M, Tanaka K, Chen Q, Pissarnitski N, Streckfuss E, Yu JQ. ACS Cent. Sci. 2015; 1: 394
- 33 Leow D, Li G, Mei TS, Yu JQ. Nature 2012; 486: 518
- 34 Lee S, Lee H, Tan KL. J. Am. Chem. Soc. 2013; 135: 18778
- 35 Hurst TE, Macklin TK, Becker M, Hartmann E, Kügel W, Parisienne-LaSalle JC, Batsanov AS, Marder TB, Snieckus V. Chem. Eur. J. 2010; 16: 8155
- 36 Li J.-M, Wang Y.-H, Yu Y, Wu R.-B, Weng J, Lu G. ACS Catal. 2017; 7: 2661
- 37 Bai P, Sun S, Li Z, Qiao H, Su X, Yang F, Wu Y, Wu Y. J. Org. Chem. 2017; 82: 12119
- 38 Liang S, Bolte M, Manolikakes G. Chem. Eur. J. 2017; 23: 96
- 39 Dou Y, Yin B, Zhang P, Zhu Q. Eur. J. Org. Chem. 2018; 4571
- 40 Zhu H, Sun S, Qiao H, Yang F, Kang J, Wu Y, Wu Y. Org. Lett. 2018; 20: 620
- 41 Jing C, Chen X, Sun K, Yang Y, Chen T, Liu Y, Qu L, Zhao Y, Yu B. Org. Lett. 2019; 21: 486
- 42 Kamata K, Yamaura T, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 7275
- 43 Dey A, Maity S, Maiti D. Chem. Commun. 2016; 52: 12398
- 44 Okumura S, Tang S, Saito T, Semba K, Sakai S, Nakao Y. J. Am. Chem. Soc. 2016; 138: 14699
- 45 Okumura S, Ebara T, Semba K, Nakao Y. Heterocycles 2019; 99: 1128
- 46 Zhang M, Luo A, Shi Y, Su R, Yang Y, You J. ACS Catal. 2019; 9: 11802
- 47 Huang L, Li Q, Wang C, Qi C. J. Org. Chem. 2013; 78: 3030
- 48 Wang L, Yang M, Liu X, Song H, Han L, Chu W, Sun Z. Appl. Organomet. Chem. 2016; 30: 680
- 49 Huang L, Sun X, Li Q, Qi C. J. Org. Chem. 2014; 79: 6720
- 50 Iwasaki M, Kaneshika W, Tsuchiya Y, Nakajima K, Nishihara Y. J. Org. Chem. 2014; 79: 11330
- 51 Li Z, Sun S, Qiao H, Yang F, Zhu Y, Kang J, Wu Y, Wu Y. Org. Lett. 2016; 18: 4594
- 52 Roane J, Daugulis O. Org. Lett. 2013; 15: 5842
- 53 Roy S, Pradhan S, Punniyamurthy T. Chem. Commun. 2018; 54: 3899
- 54 Odani R, Hirano K, Satoh T, Miura M. J. Org. Chem. 2013; 78: 11045
- 55 Li Q, Zhang SY, He G, Ai Z, Nack WA, Chen G. Org. Lett. 2014; 16: 1764
- 56 Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
- 57 Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2014; 53: 10209
- 58 Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
- 59 Thirunavukkarasu VS, Donati M, Ackermann L. Org. Lett. 2012; 14: 3416
- 60 Mochida S, Shimizu M, Hirano K, Satoh T, Miura M. Chem. Asian J. 2010; 5: 847
- 61 Satoh T, Inoh JI, Kawamura Y, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 2239
- 62 Satoh T, Nishinaka Y, Miura M, Nomura M. Chem. Lett. 1999; 28: 615
- 63 Su B, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 10163
- 64 Moon S, Nishii Y, Miura M. Org. Lett. 2019; 21: 233
- 65 Tokoro Y, Oyama T. Chem. Lett. 2018; 47: 130
- 66 Luo X, Yuan J, Yue CD, Zhang ZY, Chen J, Yu GA, Che CM. Org. Lett. 2018; 20: 1810
- 67 Li X, Gong X, Zhao M, Song G, Deng J, Li X. Org. Lett. 2011; 13: 5808
- 68 Zhang X, Si W, Bao M, Asao N, Yamamoto Y, Jin T. Org. Lett. 2014; 16: 4830
- 69 Quiñones N, Seoane A, García-Fandiño R, Mascareñas JL, Gulías M. Chem. Sci. 2013; 4: 2874
- 70 Shi R, Lu L, Xie H, Yan J, Xu T, Zhang H, Qi X, Lan Y, Lei A. Chem. Commun. 2016; 52: 13307
- 71 Li S, Deng GJ, Yin F, Li CJ, Gong H. Org. Chem. Front. 2017; 4: 417
- 72 Garrec J, Cordier M, Frison G, Prévost S. Chem. Eur. J. 2019; 25: 14441
- 73 Ling PX, Chen K, Shi BF. Chem. Commun. 2017; 53: 2166
- 74 Shi H, Wang P, Suzuki S, Farmer ME, Yu JQ. J. Am. Chem. Soc. 2016; 138: 14876
- 75 Li B, Fang SL, Huang DY, Shi BF. Org. Lett. 2017; 19: 3950
- 76 Fan Z, Ni J, Zhang A. J. Am. Chem. Soc. 2016; 138: 8470
- 77 Li J, Korvorapun K, De Sarkar S, Rogge T, Burns DJ, Warratz S, Ackermann L. Nat. Commun. 2017; 8: 15430
- 78 Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
- 79 Zhang J, Liu Q, Liu X, Zhang S, Jiang P, Wang Y, Luo S, Li Y, Wang Q. Chem. Commun. 2015; 51: 1297
- 80 Gao JY, Zhang CH, Luo MM, Kim CK, Chu W, Xue Y. J. Comput. Chem. 2012; 33: 220
- 81 Jia L, Tang Q, Luo M, Zeng X. J. Org. Chem. 2018; 83: 5082
- 82 Brandes S, Bella M, Kjœrsgaard A, Jørgensen KA. Angew. Chem. Int. Ed. 2006; 45: 1147
- 83 Tang Q, Zhang C, Luo M. J. Am. Chem. Soc. 2008; 130: 5840
- 84 Wang SG, Yin Q, Zhuo CX, You SL. Angew. Chem. Int. Ed. 2015; 54: 647
- 85 Jia L, Gao S, Xie J, Luo M. Adv. Synth. Catal. 2016; 358: 3840
- 86 Gao S, Gao L, Meng H, Luo M, Zeng X. Chem. Commun. 2017; 53: 9886
- 87 Nalbandian CJ, Brown ZE, Alvarez E, Gustafson JL. Org. Lett. 2018; 20: 3211
- 88 Lee P.-S, Xu W, Yoshikai N. Adv. Synth. Catal. 2017; 359: 4340
- 89 Barsu N, Emayavaramban B, Sundararaju B. Eur. J. Org. Chem. 2017; 4370
- 90 Anugu RR, Munnuri S, Falck JR. J. Am. Chem. Soc. 2020; 142: 5266
- 91 Oi S, Watanabe S, Fukita S, Inoue Y. Tetrahedron Lett. 2003; 44: 8665
- 92 Bedford RB, Limmert ME. J. Org. Chem. 2003; 68: 8669
- 93 Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Org. Lett. 2018; 20: 4994
- 94 Tan X, Liu B, Li X, Li B, Xu S, Song H, Wang B. J. Am. Chem. Soc. 2012; 134: 16163
- 95 Large B, Gigant N, Joseph D, Prim D. Eur. J. Org. Chem. 2019; 6407