Subscribe to RSS
DOI: 10.1055/s-0040-1707322
Inter- and Intramolecular [2+2+2] Cycloaddition of Alkyne Triple Bonds to the Carbonyl Function of Aldehydes and Ketones Enabled by η5-Cyclopentadienylcobalt(L)(L′)
This work was funded by the National Institutes of Health (NIH, GM 22479), the National Science Foundation (NSF, CHE 0907800), and the University of California at Berkeley.
Abstract
1,7-Octadiyne underwent [2+2+2] cycloaddition to acetone in the presence of η5-cyclopentadienylcobalt(L)(L′) complexes to give (η5-cyclopentadienyl)[(1,4,4a,8a-η4)-5,6,7,8-tetrahydro-3,3-dimethyl-3H-2-benzopyran]cobalt, in which the two triple bonds and the carbonyl moiety have combined to engender a 2H-pyran ring complexed to CpCo. The scope of this reaction was explored, including cocyclizations of ynals and ynones with bis(trimethylsilyl)acetylene, as well as all-intramolecular reorganizations of α,ω-diynals and -diynones. Two major trajectories were observed in the case of aldehydes, the (often minor) [2+2+2] pathway and a competing trail featuring a formal 1,5-hydride shift that results in CpCo–dienones. The latter is obviated for ketone substrates. Preliminary chemistry of selected complexes uncovered unprecedented reactions, such as acid-catalyzed ring openings and additions of amines, the latter providing access to novel carbon frames.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707322.
- Supporting Information
Publication History
Received: 07 September 2020
Accepted after revision: 14 September 2020
Article published online:
12 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Tsuda T, Kiyoi T, Miyane T, Saegusa T. J. Am. Chem. Soc. 1988; 110: 8570
- 2a Harvey DF, Johnson BM, Ung CS, Vollhardt KP. C. Synlett 1989; 15
- 2b Gleiter R, Schehlmann V. Tetrahedron Lett. 1989; 30: 2893
- 3a Tejedor D, Delgado-Hernández S, Diana-Rivero R, Díaz-Díaz A, García-Tellado F. Molecules 2019; 24: 2904
- 3b Kaur N. Synth. Commun. 2019; 49: 1103
- 3c Kaur N. Curr. Org. Synth. 2017; 14: 531
- 3d Thakur A, Louie J. Acc. Chem. Res. 2015; 48: 2354
- 3e Kurahashi T, Matsubara S. Acc. Chem. Res. 2015; 48: 1703
- 3f Yamamoto Y. Heterocycles 2013; 87: 2459
- 3g Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
- 4a Yamamoto Y, Okude Y, Mori S, Shibuya M. J. Org. Chem. 2017; 82: 7964; and references cited therein
- 4b Oonishi Y, Saito A, Sato Y. Asian J. Org. Chem. 2015; 4: 81
- 4c Miyauchi Y, Noguchi K, Tanaka K. Org. Lett. 2012; 14: 5856
- 4d Miyauchi Y, Kobayashi M, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 10922
- 4e Suda T, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2011; 50: 4475
- 4f Otake Y, Tanaka R, Tanaka K. Eur. J. Org. Chem. 2009; 2737
- 4g Montero-Campillo MM, Rodríguez-Otero J, Cabaleiro-Lago EM. J. Phys. Chem. A 2009; 113: 9180
- 4h Tanaka K, Tanaka R, Nishida G, Hirano M. Synlett 2008; 2017
- 4i Ashida S, Murakami M. Bull. Chem. Soc. Jpn. 2008; 81: 885
- 4j Tekavec TN, Louie J. J. Org. Chem. 2008; 73: 2641
- 4k Rodríguez-Otero J, Montero-Campillo MM, Cabaleiro-Lago EM. J. Phys. Chem. A 2008; 112: 8116
- 4l Tsuchikama K, Yoshinami Y, Shibata T. Synlett 2007; 1395
- 4m Tanaka K, Otake Y, Wada A, Noguchi K, Hirano M. Org. Lett. 2007; 9: 2203
- 4n Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2006; 128: 2166
- 4o Tekavec TN, Louie J. Org. Lett. 2005; 7: 4037
- 4p Bennacer B, Fujiwara M, Lee S.-Y, Ojima I. J. Am. Chem. Soc. 2005; 127: 17756
- 4q Yamamoto Y, Takagishi H, Itoh K. J. Am. Chem. Soc. 2002; 124: 6844
- 5 Aubert C, Gandon V, Han S, Johnson BM, Malacria M, Schömenauer S, Vollhardt KP. C, Whitener GD. Synthesis 2010; 2179
- 6 Hong P, Yamamoto Y, Yamazaki H. J. Organomet. Chem. 1982; 232: 71
- 7a Chang C.-A, Gürtzgen S, Johnson EP, Vollhardt KP. C. Synthesis 2019; 51: 399
- 7b Aechtner T, Barry DA, David E, Ghellamallah C, Harvey DF, de la Houpliere A, Knopp M, Malaska MJ, Pérez D, Schärer KA, Siesel BA, Vollhardt KP. C, Zitterbart R. Synthesis 2018; 50: 1053
- 7c Amslinger S, Aubert C, Gandon V, Malacria M, Paredes E, Vollhardt KP. C. Synlett 2008; 2056
- 7d Cammack JK, Jalisatgi S, Matzger AJ, Negrón A, Vollhardt KP. C. J. Org. Chem. 1996; 61: 4798
- 7e King JA, Vollhardt KP. C. J. Organomet. Chem. 1993; 460: 91
- 7f Duñach E, Halterman RL, Vollhardt KP. C. J. Am. Chem. Soc. 1985; 107: 1664
- 7g Malacria M, Vollhardt KP. C. J. Org. Chem. 1984; 49: 5010
- 7h Sternberg ED, Vollhardt KP. C. J. Org. Chem. 1984; 49: 1574
- 7i Sternberg ED, Vollhardt KP. C. J. Org. Chem. 1984; 49: 1564
- 7j Gadek TR, Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1981; 20: 802
- 8a Hung H.-H, Liao Y.-C, Liu R.-S. J. Org. Chem. 2013; 78: 7970
- 8b Lo C.-Y, Lin C.-C, Cheng H.-M, Liu R.-S. Org. Lett. 2006; 8: 3153
-
9a ref. 3a.
- 9b Krasnaya ZA. Chem. Heterocycl. Compd. 1999; 35: 1255
- 9c Kuthan J. Adv. Heterocycl. Chem. 1983; 34: 145
- 9d Lillya CP, Kluge AF. J. Org. Chem. 1971; 36: 1977
- 9e Tejedor D, Delgado-Hernández S, Diana-Rivero R, Díaz-Díaz A, García-Tellado F. Eur. J. Org. Chem. 2019; 1784 ; and references cited therein
- 9f Schiess PW, Chia HL. Helv. Chim. Acta 1970; 53: 485
- 10a Öfele K, Wurzinger A, Kalbfus W. J. Organomet. Chem. 1974; 69: 279
- 10b Christofides A, Howard JA. K, Rattue JA, Spencer JL, Stone FG. A. J. Chem. Soc., Dalton Trans. 1980; 2095
-
10c ref. 4a.
- 10d Qin P, Wang L.-A, O’Connor JM, Baldridge KK, Li Y, Tufekci B, Chen J, Rheingold AL. Angew. Chem. Int. Ed. 2020; 59: 17958
- 11 Aubert C, Betschmann P, Eichberg MJ, Gandon V, Heckrodt TJ, Lehmann J, Malacria M, Masjost B, Paredes E, Vollhardt KP. C, Whitener GD. Chem. Eur. J. 2007; 13: 7443
- 12 Winter W, Müller E. Synthesis 1974; 709
- 13 Cf. the corresponding value for 1,3-cyclohexadiene and its CpCo complex, Δδ = 2.80 ppm: King RB, Treichel PM, Stone FG. A. J. Am. Chem. Soc. 1961; 83: 3593
- 14a Lebœuf D, Iannazzo L, Geny A, Malacria M, Vollhardt KP. C, Aubert C, Gandon V. Chem. Eur. J. 2010; 16: 8904
- 14b Aubert C, Gandon V, Geny A, Heckrodt TJ, Malacria M, Paredes E, Vollhardt KP. C. Chem. Eur. J. 2007; 13: 7466
- 14c Geny A, Lebœuf D, Rouquié G, Vollhardt KP. C, Malacria M, Gandon V, Aubert C. Chem. Eur. J. 2007; 13: 5408
- 14d Gandon V, Agenet N, Vollhardt KP. C, Malacria M, Aubert C. J. Am. Chem. Soc. 2006; 128: 8509
- 15 Adams TC, Combs DW, Daves GD. Jr, Hauser FM. J. Org. Chem. 1981; 46: 4582
- 16a King JA. Jr, Vollhardt KP. C. J. Organomet. Chem. 1994; 470: 207
- 16b King JA. Jr, Vollhardt KP. C. J. Organomet. Chem. 1989; 369: 245
- 17 Page PC. B, Klau SS, Rosenthal S. Chem. Soc. Rev. 1990; 19: 147
- 18a Geyer M, Bauer J, Burschka C, Kraft P, Tacke R. Eur. J. Org. Chem. 2011; 2769
- 18b Bugarin A, Jones KD, Connell BT. Chem. Commun. 2010; 46: 1715
- 18c Lu S.-M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 8920
- 18d Arnecke R, Groth U, Köhler T. Liebigs Ann. Chem. 1994; 891
- 18e Pattenden G, Whybrow D. J. Chem. Soc., Perkin Trans. 1 1981; 3147
- 18f Sharp JT, Findlay RH, Thorogood PB. J. Chem. Soc., Perkin Trans. 1 1975; 102
- 18g Schraml J, Chvalovský V. Collect. Czech. Chem. Commun. 1970; 35: 709
- 18h Bock H, Seidl H. J. Am. Chem. Soc. 1968; 90: 5694
- 19a Santhoshkumar R, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2015; 137: 16116
- 19b Oonishi Y, Yokoe T, Hosotani A, Sato Y. Angew. Chem. Int. Ed. 2014; 53: 1135
- 19c Ishida M, Shibata Y, Noguchi K, Tanaka KC. Chem. Eur. J. 2011; 17: 12578
- 20 For a review, see: Liu X, Li B, Liu Q. Synthesis 2019; 51: 1293
- 21 Dong VM, Kou KG. M, Le DN. In Organic Reactions, Vol. 96. Denmark SE. Wiley; Hoboken: 2018: 229
- 22a Eichberg MJ, Leca D, Vollhardt KP. C. Synthesis 2015; 47: 3412
- 22b Gandon V, Aubert C, Malacria M, Vollhardt KP. C. Chem. Commun. 2008; 1599
- 22c Pellissier H, Rodriguez J, Vollhardt KP. C. Chem. Eur. J. 1999; 5: 3549
- 22d Boese R, Harvey DF, Malaska MJ, Vollhardt KP. C. J. Am. Chem. Soc. 1994; 116: 11153
- 23 Hoffmann R, Minkin VI, Carpenter BK. Bull. Soc. Chim. Fr. 1996; 133: 117
- 24 Felix D, Müller RK, Horn U, Joos R, Schreiber J, Eschenmoser A. Helv. Chim. Acta 1972; 55: 1276
- 25 For an alternate route to 18, albeit without experimental details, see: Slowinski F, Aubert C, Malacria M. Tetrahedron Lett. 1999; 40: 707
- 26 See also: Slowinski F, Aubert C, Malacria M. Eur. J. Org. Chem. 2001; 3491
- 27a Günther H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd ed. Wiley; New York: 2013
- 27b Kalinowski H.-O, Berger S, Braun S. Carbon 13 NMR Spectroscopy 1991
- 28 See, for example: Thadani AN, Rawal VH. Org. Lett. 2002; 4: 4321
- 29 See, for example: Booth H, Khedhair KA, Readshaw SA. Tetrahedron 1987; 43: 4699
- 30 See, for example: Kawai N, Lagrange J.-M, Uenishi J. Eur. J. Org. Chem. 2007; 2808
- 31a Stoll ME, Lovelace SR, Geiger WE, Schimanke H, Hyla-Kryspin I, Gleiter R. J. Am. Chem. Soc. 1999; 121: 9343
- 31b Wadepohl H, Paffen F.-J, Pritzkow H. J. Organomet. Chem. 1999; 579: 391
- 31c Schneider JJ, Hagen J, Heinemann O, Krüger C, Fabrizi de Biani F, Zanello P. Inorg. Chim. Acta 1998; 281: 53
- 31d Kölle U, Fuss B. Chem. Ber. 1986; 119: 116
- 32a Pike RD, Sweigart DA. Coord. Chem. Rev. 1999; 187: 183
- 32b Davies SG, Green ML. H, Mingos DM. P. Tetrahedron 1978; 34: 3047
- 32c Lai Y.-H, Tam W, Vollhardt KP. C. J. Organomet. Chem. 1981; 216: 97
- 33 Rausch MD, Genetti RA. J. Org. Chem. 1970; 35: 3888
- 34 Jonas K, Deffense E, Habermann D. Angew. Chem., Int. Ed. Engl. 1983; 22: 716
- 35 Adapted from: Eisenbraun EJ. Org. Synth. 1965; 45: 28
This paper was closely followed by a complementary and partly supplementary (18, 19, 28, 29) investigation:
For some recent reviews that place this reaction into a general context, see:
For selected references most pertinent to this report, see:
For reasonable approximations of the corresponding chemical shifts in the unavailable free ligand (see subsequent discussion), see:
For pertinent reviews of the dienal (dienone) ⇄ 2H-pyran equilibrium, see:
For a recent report, see:
The parent relative of the ligand in 5, 2-ethenylcyclohexene-1-carbaldehyde, has been shown to be in (unfavorable) thermal equilibrium with its pyran isomer:
Transition-metal-complexed 2H-pyrans appear to be stable to electrocyclic ring opening; see:
For computational evidence for a CpRu+-catalyzed 2H-pyran isomerization, see:
For a CpRu+-catalyzed hexatriene → cyclohexadiene electrocyclization, see:
For some DFT appraisals, see:
For some related NMR data, see:
See, for example:
For related H shifts in the [2+2+2] cycloadditions of allenyl aldehydes and enynes with aldehydes, see:
See, for example:
For reviews, see:
See also: