Synthesis 2020; 52(20): 2922-2939
DOI: 10.1055/s-0040-1707207
short review
© Georg Thieme Verlag Stuttgart · New York

Unconventional Transformations of Morita–Baylis–Hillman Adducts

,
,
,
Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy   Email: xavier.companyo@unipd.it
› Author Affiliations
This work was supported by the University of Padova and the GREEN C-C Supporting TAlent in ReSearch (STARS) starting grant (XC).
Further Information

Publication History

Received: 17 May 2020

Accepted after revision: 15 June 2020

Publication Date:
29 July 2020 (online)


Dedicated to Professor Albert Moyano on the occasion of his 65th birthday

Abstract

Morita–Baylis–Hillman (MBH) adducts are versatile starting materials widely employed in Lewis base catalysis. A myriad of different transformations have been reported based on either allylic alkylations with stabilised nucleophiles or annulations with diverse dipolarophiles. Apart from these two conventional types of reactivity, MBH adducts have recently been implemented in alternative and complementary catalytic strategies, including: (i) one-pot and cascade transformations, where additional chemical bonds are formed following the asymmetric allylic alkylation event in a single synthetic operation; (ii) regioselective α-allylations for the synthesis of trisubstituted alkenes; and (iii) dual activation strategies, involving Lewis base catalysis together with transition metal complexes or light, enabling allylic alkylations with nonstabilised nucleophiles and cascade processes. The present Short Review summarises the most significant unconventional catalytic transformations of racemic MBH adducts reported within the last decade.

1 Introduction

2 Multi-Step Single-Vessel Transformations (path iii)

2.1 One-Pot Transformations

2.2 Cascade Transformations

3 α-Allylations (path iv)

3.1 SN2′ Mechanism

3.2 SN2′–SN2 Mechanism

3.3 Miscellaneous Mechanisms

4 Dual Activation (path v)

4.1 MBH Adduct as Electrophile

4.2 MBH Adduct as Nucleophile

5 Summary and Outlook

 
  • References

    • 1a Trost BM, Dietsch T. J. Am. Chem. Soc. 1973; 95: 8200
    • 1b Trost BM, Strege PE. J. Am. Chem. Soc. 1977; 99: 1649
    • 2a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 2b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 2c Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
    • 3a Kim JN, Lee HJ, Gong JH. Tetrahedron Lett. 2002; 43: 9141
    • 3b Du Y, Han X, Lu X. Tetrahedron Lett. 2004; 45: 4967

      For selected examples, see:
    • 4a Jiang Y.-Q, Shi Y.-L, Shi M. J. Am. Chem. Soc. 2008; 130: 7202
    • 4b Cui H.-L, Peng J, Feng X, Du W, Jiang K, Chen Y.-C. Chem. Eur. J. 2009; 15: 1574
    • 4c Cui H.-L, Huang J.-R, Lei J, Wang Z.-F, Chen S, Wu L, Chen Y.-C. Org. Lett. 2010; 12: 720
    • 4d Companyó X, Valero G, Ceban V, Calvet T, Font-Bardía M, Moyano A, Rios R. Org. Biomol. Chem. 2011; 9: 7986
    • 4e Wang B, Companyó X, Li J, Moyano A, Rios R. Tetrahedron Lett. 2012; 53: 4124
    • 4f Ceban V, Tauchman J, Meazza M, Gallagher G, Light ME, Gergelitsová I, Vesely J, Rios R. Sci. Rep. 2015; 5: 16886
    • 4g Zhao S, Zhao Y.-Y, Lin J.-B, Xie T, Liang Y.-M, Xu P.-F. Org. Lett. 2015; 17: 3206
    • 4h Kowalczyka D, Albrecht Ł. Adv. Synth. Catal. 2018; 360: 406
    • 4i Kowalczyk D, Kwit M, Albrecht Ł. J. Org. Chem. 2020; 85: 2938
    • 4j Halder P, Pol MD, Ahire MM, Mhaske AB. Org. Biomol. Chem. 2020; 18: 2085

      For selected examples, see:
    • 5a Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
    • 5b Huang J.-R, Cui H.-L, Lei J, Sun X.-H, Chen Y.-C. Chem. Commun. 2011; 47: 4784
    • 5c Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Chem. Eur. J. 2011; 17: 13676
    • 5d Yaoa L, Wanga C.-J. Adv. Synth. Catal. 2015; 357: 384
    • 5e Kamlar M, Cisařova I, Hybelbauerov S, Veselý J. Eur. J. Org. Chem. 2017; 1926
    • 5f Li Z, Frings M, Yu H, Raabe G, Bolm C. Org. Lett. 2018; 20: 7367
    • 5g Li S.-H, Yang C, Wu Q, Zheng H.-L, Li X, Cheng J.-P. J. Am. Chem. Soc. 2018; 140: 12836
    • 5h Formánek B, Šimek M, Kamlar M, Císařová I, Veselý J. Synthesis 2019; 51: 9070
    • 6a Feng X, Yuan Y.-Q, Cui H.-L, Jiang K, Chen Y.-C. Org. Biomol. Chem. 2009; 7: 3660
    • 6b Zhu B, Yan L, Pan Y, Lee R, Liu H, Han Z, Huang K.-W, Tan C.-H, Jiang Z. J. Org. Chem. 2011; 76: 6894
    • 6c Liu H.-L, Xie M.-S, Qu G.-R, Guo H.-M. J. Org. Chem. 2016; 81: 10035
    • 6d Zhao S, Jin L, Chen Z.-L, Rui X, He J.-L, Xia R, Chen K, Chen X.-X, Yin Z.-L, Chen X. RSC Adv. 2019; 9: 11585
    • 7a Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Adv. Synth. Catal. 2011; 353: 3301
    • 7b Yang H.-B, Fan X, Wei Y, Shi M. Org. Chem. Front. 2015; 2: 1088
    • 8a Hong L, Sun W, Liu C, Zhao D, Wang R. Chem. Commun. 2010; 46: 2856
    • 8b Sun W, Hong L, Liu C, Wang R. Org. Lett. 2010; 12: 3914
    • 8c Deng H.-P, Shi M. Eur. J. Org. Chem. 2012; 183
    • 9a Nishimine T, Fukushi K, Shibata N, Taira H, Tokunga E, Yamano A, Shiro M, Shibata N. Angew. Chem. Int. Ed. 2014; 53: 517
    • 9b Okusu S, Okazaki H, Tokunaga E, Soloshonok VA, Shibata N. Angew. Chem. Int. Ed. 2016; 55: 6744
    • 9c Zi Y, Lange M, Schultz C, Vilotijevic I. Angew. Chem. Int. Ed. 2019; 58: 10727
  • 10 Dočekal V, Šimek M, Dračínský Veselý J. Chem. Eur. J. 2018; 24: 13441
  • 11 Du Y, Lu X, Zhang C. Angew. Chem. Int. Ed. 2003; 42: 1035
  • 13 Tan B, Candeiras NR, Barbas CF. J. Am. Chem. Soc. 2011; 133: 4672

    • For selected examples, see:
    • 14a Zhong F, Han X, Wang Y, Lu Y. Angew. Chem. Int. Ed. 2011; 50: 7837
    • 14b Zhan G, Shi M.-L, He Q, Lin W.-J, Ouyang Q, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
    • 14c Wang K.-K, Huang X, Ouyang Q, Du W, Chen Y.-C. Org. Lett. 2016; 18: 872
    • 14d Wang C, Gao Z, Zhou L, Wang Q, Wu Y, Yuan C, Liao J, Xiao Y, Guo H. Chem. Commun. 2018; 54: 1098
    • 14e Huang K.-H, Xie M.-S, Zhang Q.-Y, Qu G.-R, Guo H.-M. Org. Lett. 2018; 20: 389
    • 14f Zhao J.-Q, Yang L, Zhou X.-J, You Y, Wang Z.-H, Zhou M.-Q, Zhang X.-M, Xu X.-Y, Yuan W.-C. Org. Lett. 2019; 21: 660
    • 14g Wang C, Chen Y, Li J, Zhou L, Wang B, Xiao Y, Guo H. Org. Lett. 2019; 21: 7519

      For selected examples, see:
    • 15a Shi M, Hu F.-L, Wei Y. Chem. Commun. 2014; 50: 8912
    • 15b Li H, Luo J, Li B, Yi X, He Z. Org. Lett. 2017; 19: 5637
    • 15c Cheng Y, Han Y, Li P. Org. Lett. 2017; 19: 4774
    • 15d Jiang F, Luo G.-Z, Zhu Z.-Q, Wang C.-S, Mei G.-Z, Shi F. J. Org. Chem. 2018; 83: 10060
    • 15e Zhou T, Xia T, Liu Z, Liu L, Zhanga J. Adv. Synth. Catal. 2018; 360: 4475
    • 15f Zhang P, Guo X, Liu C, Li W, Li P. Org. Lett. 2019; 21: 152
    • 16a Zhang L, Liu H.-L, Qiao G.-Y, Hou Z.-F, Liu Y. J. Am. Chem. Soc. 2015; 137: 4316
    • 16b Wang K.-K, Wang P, Ouyang Q, Dua W, Chen Y.-C. Chem. Commun. 2016; 52: 11104
    • 16c Zhou L, Yuan C, Zhang C, Zhang L, Gao Z, Wang C, Liu H, Wu Y, Guo H. Adv. Synth. Catal. 2017; 359: 2316
    • 16d Yang W, Sun W, Zhang C, Wang Q, Guo Z, Mao B, Liao J, Guo H. ACS Catal. 2017; 7: 3142
    • 16e Zhong Y, Zhao X, Gan L, Hong S, Jiang X. Org. Lett. 2018; 20: 4250
    • 16f Yan J.-J, Liu B.-X, Xiao B.-X, Du W, Chen Y.-C. Org. Lett. 2020; 22: in press; DOI: 10.1021/acs.orglett.0c01283

      For authoritative reviews, see:
    • 17a Rios R. Catal. Sci. Technol. 2012; 2: 267
    • 17b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
    • 17c Xie P, Huang Y. Org. Biomol. Chem. 2015; 13: 8587
    • 17d Zhong N.-J, Wang Y.-Z, Cheng L, Wang D, Liu L. Org. Biomol. Chem. 2018; 13: 8587
    • 17e Chen Z.-C, Chen Z, Du W, Chen Y.-C. Chem. Rec. 2019; 19: 1
    • 19a Tietze LF. Chem. Rev. 1996; 96: 115
    • 19b Nicolaou KC, Edmons DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 19c Alba A.-N, Companyó X, Viciano M, Rios R. Curr. Org. Chem. 2009; 13: 1432
    • 19d Valero G, Companyó X, Bravo N, Alba A.-NR, Moyano A, Rios R. Synlett 2010; 1883
    • 19e Pellissier H. Chem. Rev. 2013; 113: 442
    • 19f Volla CM. R, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
    • 19g Meazza M, Companyó X, Rios R. Asian J. Org. Chem. 2018; 7: 1934
    • 20a Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 20b Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 20c Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
  • 21 Companyó X, Mazzanti A, Moyano A, Janecka A, Rios R. Chem. Commun. 2013; 49: 1184
  • 22 Yan Y, En D, Zhuang Z, Guo Y, Liao W-W. Tetrahedron Lett. 2014; 55: 479
  • 23 Companyó X, Geant P.-Y, Mazzanti A, Moyano A, Rios R. Tetrahedron 2014; 70: 75
  • 24 Lu H, Lin J.-B, Liu J.-Y, Xu P.-F. Chem. Eur. J. 2014; 20: 11659
  • 25 Putaj P, Tichá I, Cisařová I, Veselý J. Eur. J. Org. Chem. 2014; 6615
  • 26 Reddy RC, Ranjan R, Prajapti SK, Warudikar K. J. Org. Chem. 2017; 82: 6932
  • 27 Chaki BM, Takenaka K, Zhu L, Tsujihara T, Takizawa S, Sasai H. Adv. Synth. Catal. 2020; 362: 1537
  • 28 Zou G.-F, Pan F, Liao W.-W. Org. Biomol. Chem. 2013; 11: 7080
  • 29 Wang Q.-L, Peng L, Wang F-Y, Zhang M.-L, Jia L.-N, Tian F, Xu X.-Y, Wang L-X. Chem. Commun. 2013; 49: 9422
  • 30 Wang K.-K, Wang P, Ouyang Q, Du W, Chen Y.-C. Chem. Commun. 2016; 52: 11104
  • 31 Chen Q, Bao Y, Yang X, Dai Z, Yang F, Zhou Q. Org. Lett. 2018; 20: 5380
  • 32 Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
  • 33 Zhu G, Yang J, Bao G, Zhang M, Li J, Li Y, Sun W, Hong L, Wang R. Chem. Commun. 2016; 52: 7882

    • For examples of non-catalytic α-allylation of MBH carbonates, see:
    • 34a Xu S, Zhu S, Shang J, Zhang J, Tang Y, Dou J. J. Org. Chem. 2014; 79: 3696
    • 34b Jiang L, Li YG, Zhou JF, Chuan YM, Li HL, Yuan ML. Molecules 2015; 20: 8213
    • 34c Jiang L, Li YG, Yuan MW, Chuan YM, Li HL, Yuan ML. J. Chem. Res. 2017; 41: 160
    • 34d Zhu Y, Han J, Soloshonok VA, Pan Y. J. Org. Chem. 2017; 82: 13663
  • 35 Zhoung F, Chen GY, Dou X, Lu Y. J. Am. Chem. Soc. 2012; 134: 10222
  • 36 Sun Y, Yin T, Feng A, Hu Y, Yu C, Li T, Yao C. Org. Biomol. Chem. 2019; 17: 5283
  • 37 Feng TT, Huang X, Liu XL, Jing DH, Liu XW, Gou FM, Zhou Y, Yuan WC. Org. Biomol. Chem. 2014; 12: 9366

    • For the phase-transfer-catalysed α-allylation of glycine derivatives with MBH acetates, see:
    • 38a Ramachandran PV, Madhi S, Bland-Berry L, Reddy MV. R, O’Donnell MJ. J. Am. Chem. Soc. 2005; 127: 13450

    • For the corresponding Cu- and Ag-catalysed transformations, see:
    • 38b Chen C.-G, Hou X.-L, Pu L. Org. Lett. 2009; 11: 2073
    • 38c Yuan Y, Yu B, Bai X.-F, Xu Z, Zheng Z.-J, Cui Y.-M, Cao J, Xu L.-W. Org. Lett. 2017; 19: 4896
  • 39 Capaccio V, Zielke K, Eitzinger A, Massa A, Palombi L, Faust K, Waser M. Org. Chem. Front. 2018; 5: 3336
  • 40 Chen GY, Zhoung F, Lu Y. Org. Let. 2011; 22: 6070
  • 41 Singha Roy SJ, Mukherjee S. Chem. Commun. 2014; 50: 121
  • 42 Yang HB, Fan X, Wei Y, Shi M. Org. Chem. Front. 2015; 2: 1088
  • 43 Dai X, Cahard D. Synlett 2015; 26: 40
  • 44 Zhan G, Shi L, He Q, Lin WJ, Ouyang Q, Du W, Chen YC. Angew. Chem. Int. Ed. 2016; 55: 2147
  • 45 Ye H, Ye Q, Cheng D, Li X, Xu X. Tetrahedron Lett. 2018; 59: 2046
  • 46 Ye H, Zhao H, Ren S, Ye H, Cheng D, Li X, Xu X. Tetrahedron Lett. 2019; 60: 1302
    • 47a Ma J.-A, Cahard D. Angew. Chem. Int. Ed. 2004; 43: 4566
    • 47b Piovesana S, Scarpino Schietroma DM, Bella M. Angew. Chem. Int. Ed. 2011; 50: 6216
    • 47c Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
  • 48 Ceban V, Putaj P, Meazza M, Pitak MB, Coles SJ, Vesely J, Rios R. Chem. Commun. 2014; 50: 7447
  • 49 For the catalytic asymmetric synthesis of SKP ligands, see: Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 936
  • 50 Wang X, Guo P, Han Z, Wang X, Wank Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
  • 51 Wang X, Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2017; 56: 1116
  • 52 Liu J, Han Z, Wang X, Meng F, Wang Z, Ding K. Angew. Chem. Int. Ed. 2017; 56: 5050
    • 53a Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
    • 53b Wang H, Yu L, Xie M, Wu J, Qu G, Ding K, Guo H. Chem. Eur. J. 2018; 24: 1425
  • 54 Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell’Amico L, Bonchio M, Companyó X. J. Org. Chem. 2020; 85: 4463
    • 55a Yang NC, Rivas C. J. Am. Chem. Soc. 1961; 83: 2213
    • 55b Cuadros S, Melchiorre P. Eur. J. Org. Chem. 2018; 2884
    • 56a Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 56b Sambiagioand C, Noël T. Trends Chem. 2019; 2: 92
    • 56c Mateos J, Cherubini-Celli A, Carofiglio T, Bonchio M, Marino N, Companyó X, Dell’Amico L. Chem. Commun. 2018; 54: 6820
    • 56d Mateos J, Meneghini N, Bonchio M, Marino N, Carofiglio T, Companyó X, Dell’Amico L. Beilstein J. Org. Chem. 2018; 14: 2418
    • 56e Mateos J, Rigodanza F, Vega-Peñaloza A, Sartorel A, Natali M, Bortolato T, Pelosi G, Companyó X, Bonchio M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 59: 1302
  • 57 Chen P, Chen Z.-C, Li Y, Ouyang Q, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 4036
  • 58 Chen Z.-C, Chen Z, Yang Z.-H, Guo L, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 15021
  • 59 Wang Y, Jia S, Li E.-Q, Duan Z. J. Org. Chem. 2019; 84: 15323
  • 60 Chen P, Li Y, Chen Z.-C, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2020; 59: 7083
  • 61 This Short Review was written in April 2020 during the worldwide lockdown caused by the SARS-CoV-2 pandemic outbreak.