Synlett 2020; 31(17): 1713-1719
DOI: 10.1055/s-0040-1707189
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient One-Pot Protocol for Direct Access to Diarylmethyl Thioglycosides with para-Quinone Methides via S-Glycosyl Isothiouronium Salts

Atul Dubey
a   Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India   Email: pintuchem06@gmail.com   Email: pk.mandal@cdri.res.in
,
a   Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India   Email: pintuchem06@gmail.com   Email: pk.mandal@cdri.res.in
b   Academy of Scientific and Innovative Research, New Delhi-11000, India
› Author Affiliations
A. D. thanks UGC, New Delhi for providing Research Fellowship. The author gratefully acknowledges financial support from DST-SERB, New Delhi (Scheme No. EMR/2017/001791) and SAIF Division of CSIR-CDRI for providing the spectroscopic and analytical data. CDRI communication no. 10081.
Further Information

Publication History

Received: 15 April 2020

Accepted after revision: 16 June 2020

Publication Date:
09 July 2020 (online)


Abstract

An efficient one-pot protocol has been developed for the direct preparation of diarylmethyl thioglycosides starting from per-O-acetylated sugars via glycosyl isothiouronium salts. The one-pot reaction conditions involve rapid conversion of the per-O-acetylated sugar with thiourea in the presence of boron trifluoride etherate as catalyst to give the corresponding glycosyl isothiouronium salt, which is subsequently treated with a para-quinone methide in the presence of a base to give the a diarylmethyl thioglycoside in excellent yield.

Supporting Information

 
  • References and Notes

    • 1a Witczak ZJ. Curr. Med. Chem. 1999; 6: 165
    • 1b Pachamuthu K, Schmidt RR. Chem. Rev. 2006; 106: 160
    • 1c Samuni-Blank M, Izhaki I, Dearing MD, Gerchman Y, Trabelcy B, Karasov AL. W. H, Arad Z. Curr. Biol. 2012; 22: 1218
    • 2a Rye CS, Withers SG. Carbohydr. Res. 2004; 339: 699
    • 2b Metaferia BB, Fetterolf BJ, Shazad-ul-Hussan S, Moravec M, Smith JA, Ray S, Gutierrez-Lugo M.-T, Bewley CA. J. Med. Chem. 2007; 50: 6326
    • 3a Brajeswar P, Walter K. Carbohydr. Res. 1984; 126: 27
    • 3b Kuhn CS, Lehmann J, Steck J. Tetrahedron 1990; 46: 3129
    • 3c Apparu C, Driguez H, Williamson G, Svensson B. Carbohydr. Res. 1995; 277: 313
    • 4a Driguez H. Top. Curr. Chem. 1997; 187: 85
    • 4b Pachamuthu K, Schmidt RR. Chem. Rev. 2006; 106: 160
    • 5a Zhang Z, Ollmann IR, Ye X.-S, Wischat R, Baasov T, Wong C.-H. J. Am. Chem. Soc. 1999; 121: 734
    • 5b Lian G, Zhan X, Yu B. Carbohydr. Res. 2015; 403: 13
    • 5c Basu N, Maity SK, Ghosh R. RSC Adv 2012; 2: 12661
    • 5d Xiong D.-C, Zhang L.-H, Ye X.-S. Adv. Synth. Catal. 2008; 350: 1696
    • 6a Eisele T, Toepfer A, Kretzschmar G, Schmidt RR. Tetrahedron Lett. 1996; 37: 1389
    • 6b Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
    • 6c Fukase K, Hasuoka A, Kinoshita I, Aoki Y, Kusumoto SA. Tetrahedron 1995; 51: 4923
    • 7a Codée JD. C, Litjens RE. J. N, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem. Soc. Rev. 2005; 34: 769
    • 7b Johannes M, Reindl M, Gerlitzki B, Schmitt E, Hoffmann-Röder A. Beilstein J. Org. Chem. 2015; 11: 155
    • 7c Zeng Y, Wang Z, Whitfield D, Huang X. J. Org. Chem. 2008; 73: 7952
    • 7d Fridman M, Belakhov V, Lee LV, Liang F.-S, Wong C.-H, Baasov T. Angew. Chem. Int. Ed. 2005; 44: 447
    • 8a Fügedi P, Garegg PJ, Lönn H, Norberg T. Glycoconjugate J. 1987; 4: 97
    • 8b Kaeothip S, Demchenko AV. Carbohydr. Res. 2011; 346: 1371
    • 9a Castaneda F, Burse A, Boland W, Kinne RK.-H. Int. J. Med. Sci. 2007; 4: 131
    • 9b Rodrigue J, Ganne G, Blanchard B, Saucier C, Giguère D, Shiao TC, Varrot A, Imberty A, Roy R. Org. Biomol. Chem. 2013; 11: 6906
    • 9c Elgemeie GH, Farag AB, Amin KM, El-Badry OM, Hassan GS. Med. Chem. 2014; 4: 814 ; DOI: 10.4172/2161-0444.1000234
    • 10a Kato E, Nagano H, Yamamura S, Ueda M. Tetrahedron 2003; 59: 5909
    • 10b Schnabelrauch M, Vasella A, Withers SG. Helv. Chim. Acta 1994; 77: 778
  • 11 Herr RR, Bergy ME. Antimicrob. Agents Chemother. 1962; 560
    • 12a Furneaux R, Ferrier R. Methods Carbohydr. Chem. 1980; 8: 251
    • 12b Nicolaou KC, Randall JL, Furst GT. J. Am. Chem. Soc. 1985; 107: 5556
    • 12c Tai C.-A, Kulkarni SS, Hung S.-C. J. Org. Chem. 2003; 68: 8719
    • 12d Agnihotri G, Tiwari P, Misra AK. Carbohydr. Res. 2005; 340: 1393
    • 13a Fischer E, Delbrük K. Ber. Dtsch. Chem. Ges. 1909; 42: 1476
    • 13b Blanc-Muesser M, Defaye J, Driguez H. Carbohydr. Res. 1978; 67: 305
    • 13c Apparu M, Blanc-Muesser M, Defaye J, Driguez H. Can. J. Chem. 1981; 59: 314
    • 14a Durette PL, Shen TY. Carbohydr. Res. 1980; 81: 261
    • 14b Lee RT, Lee YC. Carbohydr. Res. 1982; 101: 49
    • 14c Hasegawa A, Morita M, Kojima Y, Ishida H, Kiso M. Carbohydr. Res. 1991; 214: 43
    • 14d Defaye J, Guillot JM. Carbohydr. Res. 1994; 253: 185
    • 15a Ibrahim N, Alami M, Messaoudi S. Asian J. Org. Chem. 2018; 7: 2026
    • 15b Brachet E, Brion J.-D, Messaoudi S, Alami M. Adv. Synth. Catal. 2013; 355: 477
    • 16a Brachet E, Brion J.-D, Alami M, Messaoudi S. Adv. Synth. Catal. 2013; 355: 2627
    • 16b Bruneau A, Roche M, Hamze A, Brion J.-D, Alami M, Messaoudi S. Chem. Eur. J. 2015; 21: 8375
  • 17 Fokt I, Szeja W. Carbohydr. Res. 1992; 232: 169
  • 18 Lacombe JM, Rakotomanomana N, Pavia AA. Tetrahedron Lett. 1988; 29: 4293
    • 19a Jarava-Barrera C, Parra A, López A, Cruz-Acosta F, Collado-Sanz D, Cárdenas DJ, Tortosa M. ACS Catal. 2016; 6: 442
    • 19b Lou Y, Cao P, Jia T, Zhang Y, Wang M, Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
    • 19c López A, Parra A, Jarava-Barrera C, Tortosa M. Chem. Commun. 2015; 51: 17684
    • 19d Reddy V, Anand RV. Org. Lett. 2015; 17: 3390
    • 19e Chu W.-D, Zhang L.-F, Bao X, Zhao X.-H, Zeng C, Du J.-Y, Zhang G.-B, Wang F.-X, Ma X.-Y, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
    • 20a Li W, Xu X, Liu Y, Gao H, Cheng Y, Li P. Org. Lett. 2018; 20: 1142
    • 20b Zhang X.-Z, Gan K.-J, Liu X.-X, Deng Y.-H, Wang F.-X, Yu K.-Y, Zhang J, Fan C.-A. Org. Lett. 2017; 19: 3207
    • 20c Ge L, Lu X, Cheng C, Chen J, Cao W, Wu X, Zhao G. J. Org. Chem. 2016; 81: 9315
    • 20d Zhao K, Zhi Y, Wang A, Enders D. ACS Catal. 2016; 6: 657
    • 21a Goswami P, Singh G, Anand RV. Org. Lett. 2017; 19: 1982
    • 21b Jadhav AS, Anand RV. Eur. J. Org. Chem. 2017; 3716
    • 21c Jadhav AS, Anand RV. Org. Biomol. Chem. 2017; 15: 56
    • 21d Arde P, Anand RV. Org. Biomol. Chem. 2016; 14: 5550
    • 21e Arde P, Anand RV. RSC Adv. 2016; 6: 77111
    • 21f Zhang X.-Z, Deng Y.-H, Yan X, Yu K.-Y, Wang F.-X, Ma X.-Y, Fan C.-A. J. Org. Chem. 2016; 81: 5655
    • 21g Jadhav AS, Pankhade YA, Hazra R, Anand RV. J. Org. Chem. 2018; 83: 10107
    • 21h Zhou T, Li S, Huang S, Li C, Zhao Y, Chen J, Chen A, Xiao Y, Liu L, Zhang J. Org. Biomol. Chem. 2017; 15: 4941
    • 22a Santra S, Porey A, Guin J. Asian J. Org. Chem. 2018; 7: 477
    • 22b Molleti N, Kang JY. Org. Lett. 2017; 19: 958
    • 22c Yang C, Gao S, Yao H, Lin A. J. Org. Chem. 2016; 81: 11956
    • 22d Pan R, Hu L, Han C, Lin A, Yao H. Org. Lett. 2018; 20: 1974
    • 22e Yuan Z, Liu L, Pan R, Yao H, Lin A. J. Org. Chem. 2017; 82: 8743
  • 23 Fujihira T, Takido T, Seno M. J. Mol. Catal. A: Chem. 1999; 137: 65
    • 24a Èerný M, Pacák J. Collect. Czech. Chem. Commun. 1959; 24: 2566
    • 24b Èerný M, Pacák J. Collect. Czech. Chem. Commun. 1961; 6: 2084
    • 24c Claeyssens M, De Bruyne CK. Carbohydr. Res. 1972; 22: 460
    • 25a Ibatullin FM, Selivanov SI, Shavva AG. Synthesis 2001; 419
    • 25b Belz T, Williams SJ. Carbohydr. Res. 2016; 429: 38
    • 25c Lipták A, Sajtos F, Jánossy L, Gehle D, Szilágyi L. Org. Lett. 2003; 5: 3671
  • 26 (3,5-Di-tert-butyl-4-hydroxyphenyl)(phenyl)methyl 2,3,4,6-Tetra-O-acetyl-1-thiohexopyranoside (3a); Typical Procedure Thiourea (84 mg, 1.1 mmol) and BF3·Et2O (136 μL, 1.1 mmol) were added to a solution of 2,3,4,6-tetra-O-acetyl-β-d-galactopyranose (1a; 390 mg, 1.0 mmol) in MeCN (5 mL), and the mixture was refluxed at 80 °C until the starting material was fully consumed (TLC; 30 min). The mixture was then cooled to rt, and Et3N (279 μL, 2.0 mmol) and p-QM 2a (353 mg, 1.2 mmol) were added with stirring. The mixture was kept at rt for 2 h then diluted with CH2Cl2 and washed with H2O. The resulting organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel; hexane–EtOAc (5:1)] to a give a colorless oil; yield: 546 mg (83%; dr 1:1). IR (neat): 3644, 3021, 2967, 1752, 1522, 1348, 1225, 1157, 1052, 760, 668 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.49–7.46 (m, 1 H), 7.39–7.34 (m, 2 H), 7.31–7.19 (m, 3 H), 7.15–7.13 (m, 1 H), 5.43 (s, 0.6 H), 5.38 (s, 0.4 H), 5.35–5.33 (m, 1 H), 5.29–5.22 (m, 1.5 H), 5.15 (s, 0.5 H), 4.91–4.85 (m, 1 H), 4.14–4.03 (m, 3 H), 3.60–3.55 (m, 1 H), 2.14 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 1.95 (s, 3 H), 1.3 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 170.3, 170.2, 170.1, 170.0, 169.5, 169.4, 153.2, 153.1, 140.9, 140.5, 136.1, 135.8, 130.3, 130.2, 128.6, 128.5, 128.4, 128.3, 127.5, 127.2, 125.1, 125.0, 83.7, 83.4, 74.3, 74.2, 72.0, 71.9, 67.4, 67.3, 67.2, 61.5, 61.4, 53.3, 52.7, 34.4, 34.3, 30.3, 30.1, 20.9, 20.8, 20.7, 20.6, 20.5. HRMS (ESI-TOF): m/z [M + NH4]+ calcd for C35H50NO10S: 676.3150; found: 676.3152.
    • 27a Richter D, Hampel N, Singer T, Ofial AR, Mayr H. Eur. J. Org. Chem. 2009; 3203
    • 27b Yuan Z, Pan R, Zhang H, Liu L, Lin A, Yao H. Adv. Synth. Catal. 2017; 359: 4244
  • 28 Compound 4a (Table 3); Typical ProcedureThiourea (84 mg, 1.1 mmol) and BF3·Et2O (136 μL, 1.1 mmol) were added to a solution of peracetyl-β-d-lactose (678 mg, 1.0 mmol) in MeCN (10 mL), and the mixture was refluxed at 80 °C until the starting material was completely consumed (TLC, 30 min). The mixture was then cooled to rt and Et3N (279 μL, 2.0 mmol) and p-QM 2a (353 mg, 1.2mmol) were added with stirring. The mixture was kept at rt for 2 h then diluted with CH2Cl2 and washed with H2O. The resulting organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (1:1)] to give a colorless oil; yield: 748 mg (79%; dr 1:1).IR (neat): 3617, 2958, 2568, 1753, 1623, 1374, 1225, 1165, 699 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.46–7.41 (m, 1 H), 7.37–7.33 (m, 2 H), 7.31–7.26 (m, 2 H), 7.22–7.18 (m, 1 H), 7.12–7.11 (m, 1 H), 5.39 (br s, 1 H), 5.33–5.32 (m, 1 H), 5.22–5.14 (m, 1 H), 5.08–5.03 (m, 2 H), 5.00–4.89 (m, 2 H), 4.50–4.34 (m, 2 H), 4.12–4.02 (m, 4 H), 3.86–3.82 (m, 1 H), 3.77–3.2 (m, 1 H), 3.28–3.23 (m, 1 H), 2.17 (s, 3 H), 2.13 (s, 2 H), 2.04 (s, 12 H), 1.95 (s, 3 H), 1.38 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 170.3, 170.1, 170.0, 169.7, 169.6, 169.5, 169.1, 169.0, 153.2, 153.1, 140.9, 140.4, 136.1, 135.8, 130.3, 130.2, 128.6, 128.5, 128.4, 128.2, 128.1, 127.6, 127.2, 125.1, 124.9, 124.8, 101.2, 101.1, 82.8, 82.4, 77.2, 76.4, 76.3, 74.1, 73.9, 71.1, 70.6, 70.5, 70.4, 69.1, 66.5, 62.3, 62.2, 60.7, 53.3, 52.5, 34.4, 34.3, 30.4, 30.2, 20.9, 20.8, 20.7, 20.6, 20.5, 20.4. HRMS (ESI-TOF): m/z [M + NH4]+ Calcd for C47H66NO18S: 964.3995; found: 964.3968.
    • 29a Luzzio FA. Synth. Commun. 1984; 14: 209
    • 29b Ibatullin FM, Shabalin KA, Jänis JV, Shavva AG. Tetrahedron Lett. 2003; 44: 7961