Synlett 2020; 31(13): 1277-1281
DOI: 10.1055/s-0040-1707138
letter
© Georg Thieme Verlag Stuttgart · New York

Site-Selective Suzuki–Miyaura Reaction of 6,8-Dichloro-1,2,4-triazolo[4,3-a]pyridines

David Kuhrt
a   Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
b   Leibniz Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Peter Ehlers
a   Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
b   Leibniz Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Anke Spannenberg
b   Leibniz Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
,
Peter Langer
a   Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
b   Leibniz Institut für Katalyse, Albert-Einstein-Str. 29a, 18059 Rostock, Germany   Email: peter.langer@uni-rostock.de
› Author Affiliations
Financial support by the federal state of Mecklenburg-Vorpommern is gratefully acknowledged.
Further Information

Publication History

Received: 09 April 2020

Accepted after revision: 10 May 2020

Publication Date:
03 June 2020 (online)


Abstract

Triazolopyridines have found various applications as pharmaceuticals, agrochemicals, or optical materials. Consequently, the introduction of various functionalities at specific sites of this heterocyclic framework is of great importance. In this regard, we report the development of a site-selective Suzuki–Miyaura reactions leading to substituted triazolopyridines at positions 6 and 8. Under optimized conditions, the respective products have been obtained with high selectivity and yield.

Supporting Information

 
  • References and Notes

    • 1a Alvarez-Builla J, Vaquero JJ, Barluenga J. Modern Heterocyclic Chemistry . Wiley-VCH; Weinheim: 2011
    • 1b Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10460
    • 1c Sbei N, Listratova AV, Titov AA, Voskressensky LG. Synthesis 2019; 51: 2455
    • 1d Budhwan R, Yadav S, Murarka S. Org. Biomol. Chem. 2019; 17: 6326
    • 1e Döndaş HA, de Gracia Retamosa M, Sansano JM. Organometallics 2019; 38: 1828
    • 1f Pawlowski R, Stanek F, Stodulski M. Molecules 2019; 24: 1533
    • 2a Fairlamb IJ. S. Chem. Soc. Rev. 2007; 36: 1036
    • 2b Legault CY, Garcia Y, Merlic CA, Houk KN. J. Am. Chem. Soc. 2007; 129: 12664
    • 2c Garcia Y, Schoenebeck F, Legault CY, Merlic CA, Houk KN. J. Am. Chem. Soc. 2009; 131: 6632
    • 2d Hamdy ST, Zhang Y. Chem. Commun. 2006; 299
    • 2e Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 3a Jopp S, Ehlers P, Frank E, Mernyák E, Schneider G, Wölfling J, Villinger A, Langer P. Synlett 2019; 30: 600
    • 3b Rivera RP, Ehlers P, Rodríguez ET, Langer P. ChemistrySelect 2018; 3: 11177
    • 3c Hung TQ, Dang TT, Pham NN, Langer P. Targets Heterocycl. Syst. 2017; 21: 389
    • 3d Kuhrt D, Ejaz SA, Afzal S, Khan SU, Lecka J, Sévigny J, Ehlers P, Spannenberg A, Iqbal J, Langer P. Eur. J. Med. Chem. 2017; 138: 816
    • 3e Rossi R, Bellina F, Lessi M. Adv. Synth. Catal. 2012; 354: 1181
  • 4 Liu X.-H, Xu X.-Y, Tan C.-X, Wenig J.-Q, Xin J.-H, Chen J. Pest Manag. Sci. 2015; 71: 292
    • 5a Li G, Chen Q, Zheng J, Wang Q, Zhan F, Lou W, Yang Y.-F, She Y. Inorg. Chem. 2019; 58: 14349
    • 5b Jian N, Qu K, Gu H, Zou L, Liu X, Hu F, Xu J, Yu Y, Lu B. Phys. Chem. Chem. Phys. 2019; 21: 7174
    • 5c Song W, Chen Y, Xu Q, Mu H, Cao J, Huang J, Su J. ACS Appl. Mater. Interfaces 2018; 10: 24689
    • 5d Song W, Shi L, Gao L, Hu P, Mu H, Xia Z, Huang J, Su J. ACS Appl. Mater. Interfaces 2018; 10: 5714
    • 5e Wu J, You Q, Lan J, Guo Q, Li X, Xue Y, You J. Org. Biomol. Chem. 2015; 13: 5372
    • 5f Ballesteros-Garrido R, Abarca B, Ballesteros R, Ramírez de Arellano C, Leroux FR, Colobert F, García-España E. New J. Chem. 2009; 33: 2102
    • 5g Das S, Pradhan B. RSC Adv. 2015; 5: 73726
    • 6a Jaśkowska J, Zaręba P, Śliwa P, Pindelska E, Satała G, Majka Z. Molecules 2019; 24: 1609
    • 6b Li J, Kennedy LJ, Walker SJ, Wang H, Li JJ, Hong Z, Ye SP, O’Connor X.-Y, Chen S, Wu S, Yoon DS, Nayeem A, Camac DM, Ramamurthy V, Morin PE, Sheriff S, Wang M, Harper TW, Golla R, Seethala R, Harrity T, Ponticiello RP, Morgan NN, Taylor JR, Zebo R, Maxwell B, Moulin F, Gordon JA, Robl DA. ACS Med. Chem. Lett. 2018; 9: 1170
    • 6c Wurtz NR, Viet A, Shaw SA, Dilger A, Valente MN, Khan JA, Jusuf S, Narayanan R, Fernando G, Lo F, Liu X, Locke GA, Kopcho L, Abell LM, Sleph P, Basso M, Zhao L, Wexler RR, Duclos F, Kick EK. ACS Med. Chem. Lett. 2018; 9: 1175
    • 6d Bonafoux D, Nanthakumar S, Bandarage UK, Memmott C, Lowe D, Aronov AM, Bhisetti GR, Bonanno KC, Coll J, Leeman J, Lepre CA, Lu F, Perola E, Rijnbrand R, Taylor WP, Wilson D, Zhou Y, Zwahlen J, ter Haar E. J. Med. Chem. 2016; 59: 7138
    • 6e Menet CJ, Fletcher SR, Van Lommen G, Geney R, Blanc J, Smits K, Jouannigot N, Deprez P, van der Aar E, Clement-Lacroix P, Lepescheux L, Galien R, Vayssiere B, Nelles L, Christophe T, Brys R, Uhrig M, Ciesielski F, Van Rompaey L. J. Med. Chem. 2014; 57: 9323
    • 6f Peterson EA, Teffera Y, Albrecht BK, Bauer D, Bellon SF, Boezio A, Boezio C, Broome MA, Choquette D, Copeland KW, Dussalt I, Lewis R, Lin M.-HJ, Lohman J, Liu J, Potashman M, Rex K, Shimanovich R, Whittington DA, Vaida KR, Harmange J.-C. J. Med. Chem. 2015; 58: 2417
    • 6g Jemaà M, Galluzzi L, Kepp O, Senovilla L, Brands M, Boemer U, Koppitz M, Lienau P, Prechtl S, Schulze V, Siemeister G, Wengner AM, Mumberg D, Ziegelbauer K, Abrieu A, Castedo M, Vitale I, Kroemer G. Cell Death Differ. 2013; 20: 1532
    • 6h Cid JM, Tresdern G, Vega JA, de Lucas AI, Matesanz E, Iturrino L, Linares ML, Garcia A, Andrés JI, Macdonald GJ, Oehlrich D, Lavreyessen H, Megens A, Ahnaou A, Drinkenburg W, Mackie C, Pryde S, Gallacher D, Trabanco AA. J. Med. Chem. 2012; 55: 8770
    • 6i Sadana AK, Mirza Y, Aneja KR, Prakash O. Eur. J. Med. Chem. 2003; 38: 533
    • 7a Kumar GS, Kurumurthy C, Rao PS, Veeraswamy B, Rao PS, Narsaiah B. J. Heterocycl. Chem. 2015; 52: 75
    • 7b Schmidt MA, Qian X. Tetrahedron Lett. 2013; 54: 5721
  • 8 CCDC 1976133–1976136 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 9a Lessing T, Müller TJ. J. Appl. Sci. 2015; 5: 1803
    • 9b Müller TJ. J. Top. Organomet. Chem. 2006; 19: 149
    • 9c Fernández M, Castaing M, Willis MC. Chem. Sci. 2017; 8: 536
    • 9d Lautens M, Paquin J.-F, Piguel S. J. Org. Chem. 2002; 67: 3972
    • 10a Triazolopyridines 3am; General Procedure Triazolopyridine 1 or 2 (0.57 mmol, 150 mg), the appropriate boronic acid (1.31 mmol, 2.3 equiv), K3PO4 (2.27 mmol, 482 mg, 4.0 equiv), Pd(OAc)2 (0.03 mmol, 6.3 mg, 5 mol%), and SPhos ligand (0.06 mmol, 23.0 mg, 10 mol%) were added to an argon-flushed glass pressure tube. Toluene (5 mL) was added, and the mixture was heated to 100 °C for 24 h, then cooled. The solvent was evaporated, and the crude product was purified by column chromatography (silica gel, heptane–EtOAc). 3,6,8-Triphenyl[1,2,4]triazolo[4,3-a]pyridine (3a) White solid; yield: 189 mg (96%); mp 206–207 °C. IR (ATR): 3367 (w), 3075 (w), 2965 (w), 2922 (w), 2864 (w), 1478 (m), 1446 (w), 1359 (w), 1265 (w), 1076 (w), 888 (w), 839 (w), 764 (s), 695 (s), 591 (m), 512 (m), 449 (w) cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.36 (d, J = 1.5 Hz, 1 H), 8.23–8.16 (m, 2 H), 7.93–7.86 (m, 2 H), 7.70 (d, J = 1.5 Hz, 1 H), 7.66–7.41 (m, 11 H). 13C NMR (75 MHz, CDCl3): δ = 118.22 (CH), 126.23 (CH), 126.84 (C), 127.29 (2 CH), 128.73, 128.92, 129.03, 129.39 (CH), 129.41, 129.47, 129.53, 129.91, 130.45 (CH), 134.84, 136.61, 147.59, 149.11. MS (EI): m/z (%) = 347 [M + ] (100), 244 (20), 216 (18), 189 (12), 165 (3), 140 (4), 103 (7), 77 (5). HRMS (EI): m/z [M]+ calcd for C24H17N3: 347.14170; found: 347.14106.