Synlett 2020; 31(12): 1226-1230
DOI: 10.1055/s-0040-1707131
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Methylthiolation of Aryl Iodides and Bromides with Dimethyl Disulfide in Water

Ying-yu Wang
,
Xiang-mei Wu
,
Ming-hua Yang
We are grateful for financial support from the Natural Science Foundation of Zhejiang Province (No. LY18B020004) and the National Natural Science Foundation of China (No. 21572094).
Further Information

Publication History

Received: 06 February 2020

Accepted after revision: 23 April 2020

Publication Date:
02 July 2020 (online)


Abstract

An efficient route to aryl methyl sulfides through the copper-catalyzed coupling reaction of aryl iodides or bromides with dimethyl disulfide in water is described. Electron-donating and electron-withdrawing functional groups in the substrates were tolerated, and the corresponding products were obtained in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Kalgutkar AS, Kozak KR, Crews BC, Marnett LJ. J. Med. Chem. 1998; 41: 4800
    • 1b Laufer SA, Striegel H.-G, Wagner GK. J. Med. Chem. 2002; 45: 4695
    • 1c Laufer SA, Zimmermann W, Ruff KJ. J. Med. Chem. 2004; 47: 6311
    • 1d Gallardo-Godoy A, Fierro A, McLean TH, Castillo M, Cassels BK, Reyes-Parada M, Nichols DE. J. Med. Chem. 2005; 48: 2407
    • 1e Pradhan TK, De A, Mortier J. Tetrahedron 2005; 61: 9007
    • 2a Dubbaka SR, Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 2b Peña-Cabrera E, Aguilar-Aguilar A, González-Domínguez M, Lager E, Zamudio-Vázquez R, Godoy-Vargas J, Villanueva-García F. Org. Lett. 2007; 9: 3985
    • 2c Prokopcová H, Kappe CO. Angew. Chem. Int. Ed. 2009; 48: 2276
    • 2d Metzger A, Melzig L, Despotopoulou C, Knochel P. Org. Lett. 2009; 11: 4228
    • 2e Melzig L, Metzger A, Knochel P. J. Org. Chem. 2010; 75: 2131
    • 2f Melzig L, Metzger A, Knochel P. Chem. Eur. J. 2011; 17: 2948
    • 2g Ookubo Y, Wakamiya A, Yorimitsu H, Osuka A. Chem. Eur. J. 2012; 18: 12690
    • 2h Modha SG, Mehta VP, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 5042
    • 2i Hooper JF, Young RD, Pernik I, Weller AS, Willis MC. Chem. Sci. 2013; 4: 1568
    • 2j Liu J, Liu Y, Du W, Dong Y, Liu J, Wang M. J. Org. Chem. 2013; 78: 7293
    • 2k Pan F, Wang H, Shen P.-X, Zhao J, Shi Z.-J. Chem. Sci. 2013; 4: 1573
    • 2l Wang L, He W, Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 2m Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
    • 2n Otsuka S, Fujino D, Murakami K, Yorimitsu H, Osuka A. Chem. Eur. J. 2014; 20: 13146
    • 2o Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D, Wang X.-C. Adv. Synth. Catal. 2014; 356: 325
    • 2p Zhu F, Wang Z.-X. Org. Lett. 2015; 17: 1601
    • 3a Ram VJ, Agarwal N. Tetrahedron Lett. 2001; 42: 7127
    • 3b Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 3c Wang X, Tang Y, Long C.-Y, Dong W.-K, Li C, Xu X, Zhao W, Wang X.-Q. Org. Lett. 2018; 20: 4749
    • 4a Uetake Y, Niwa T, Hosoya T. Org. Lett. 2016; 18: 2758
    • 4b Bhanuchandra M, Baralle A, Otsuka S, Nogi K, Yorimitsu H, Osuka A. Org. Lett. 2016; 18: 2966
    • 5a Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
    • 5b Arambasic M, Hooper JF, Willis MC. Org. Lett. 2013; 15: 5162
    • 5c Iwasaki M, Topolovčan N, Hu H, Nishimura Y, Gagnot G, Nanakorn R, Yuvacharaskul R, Nakajima K, Nishihara Y. Org. Lett. 2016; 18: 1642
    • 6a Migita T, Shimizu T, Asami Y, Shiobara J.-i, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 6b Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 6c Li GY, Zheng G, Noonan AF. J. Org. Chem. 2001; 66: 8677
    • 6d Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 6e Mispelaere-Canivet C, Spindler J.-F, Perrio S, Beslin P. Tetrahedron 2005; 61: 5253
    • 6f Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 6g Dahl T, Tornøe CW, Bang-Andersen B, Nielsen P, Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 1726
    • 6h Lee C.-F, Liu Y.-C, Badsara SS. Chem. Asian J. 2014; 9: 706
    • 8a Kwong FY, Buchwald SL. Org. Lett. 2002; 4: 3517
    • 8b Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 8c Enguehard-Gueiffier C, Thery I, Gueiffier A, Buchwald SL. Tetrahedron 2006; 62: 6042
    • 8d Carril M, SanMartin R, Dominguez E, Tellitu I. Chem. Eur. J. 2007; 13: 5100
    • 8e Zhang H, Cao W, Ma D. Synth. Commun. 2007; 37: 25
    • 8f Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 8g Verma AK, Singh J, Chaudhary R. Tetrahedron Lett. 2007; 48: 7199
    • 8h Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
  • 9 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613
    • 10a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189
    • 10b Reddy VP, Swapna K, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
    • 11a Kukushkin VY. Coord. Chem. Rev. 1995; 139: 375
    • 11b Fernandes AC, Fernandes JA, Romão CC, Veiros LF, Calhorda MJ. Organometallics 2010; 29: 5517
    • 11c Cardoso JM. S, Royo B. Chem. Commun. 2012; 48: 4944
  • 12 Basu B, Paul S, Nanda AK. Green Chem. 2010; 12: 767
  • 13 Glasnov TN, Holbrey JD, Kappe CO, Seddon KR, Yan T. Green Chem. 2012; 14: 3071
  • 14 Testaferri L, Tiecco M, Tingoli M, Bartoli D, Massoli A. Tetrahedron 1985; 41: 1373
  • 15 Jiang Y, Qin Y, Xie S, Zhang X, Dong J, Ma D. Org. Lett. 2009; 11: 5250
  • 16 Zhang C, Zhou Y, Huang J, Tu C, Zhou X, Yin G. Org. Biomol. Chem. 2018; 16: 6316
  • 17 Wang M, Qiao Z, Zhao J, Jiang X. Org. Lett. 2018; 20: 6193
    • 18a Luo F, Pan C, Li L, Chen F, Cheng J. Chem. Commun. 2011; 47: 5304
    • 18b Joseph PJ. A, Priyadarshini S, Kantam ML, Sreedhar B. Tetrahedron 2013; 69: 8276
    • 18c Ghosh K, Ranjit S, Mal D. Tetrahedron Lett. 2015; 56: 5199
    • 19a She J, Jiang Z, Wang Y. Tetrahedron Lett. 2009; 50: 593
    • 19b Fu Z, Li Z, Xiong Q, Cai H. Eur. J. Org. Chem. 2014; 2014: 7798
    • 20a Chu L, Yue X, Qing F.-L. Org. Lett. 2010; 12: 1644
    • 20b Dai C, Xu Z, Huang F, Yu Z, Gao Y.-F. J. Org. Chem. 2012; 77: 4414
    • 20c Patil SM, Kulkarni S, Mascarenhas M, Sharma R, Roopan SM, Roychowdhury A. Tetrahedron 2013; 69: 8255
    • 20d Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
    • 20e Zou J.-F, Huang W.-S, Li L, Xu Z, Zheng Z.-J, Yang K.-F, Xu L.-W. RSC Adv. 2015; 5: 30389
    • 20f Xu Y, Cong T, Liu P, Sun P. Org. Biomol. Chem. 2015; 13: 9742
    • 20g Ravi C, Mohan DC, Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
  • 21 Taniguchi N. J. Org. Chem. 2004; 69: 6904
  • 22 Baldovino-Pantaleón O, Hernández-Ortega S, Morales-Morales D. Adv. Synth. Catal. 2006; 348: 236
  • 23 Stanetty P, Koller H, Mihovilovic M. J. Org. Chem. 1992; 57: 6833
  • 24 Fort Y, Rodriguez AL. J. Org. Chem. 2003; 68: 4918
  • 25 Pratt SA, Goble MP, Mulvaney MJ, Wuts PG. M. Tetrahedron Lett. 2000; 41: 3559
  • 26 Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 27 Iwasaki M, Iyanaga M, Tsuchiya Y, Nishimura Y, Li W, Li Z, Nishihara Y. Chem. Eur. J. 2014; 20: 2459
    • 28a Majek M, Wangelin AJ. V. Chem. Commun. 2013; 49: 5507
    • 28b Koziakov D, Majek M, von Wangelin AJ. Org. Biomol. Chem. 2016; 14: 11347
  • 29 Wu X.-m, Lou J.-m, Yan G.-b. Synlett 2016; 27: 2269
  • 30 Czyz ML, Weragoda GK, Monaghan R, Connell TU, Brzozowski M, Scully AD, Burton J, Lupton DW, Polyzos A. Org. Biomol. Chem. 2018; 16: 1543
  • 31 Roglans A, Pla-Quintana A, Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
  • 32 (Het)aryl Methyl Sulfides; General Procedure A 25-mL sealable tube was charged with the appropriate aryl iodide or bromide (1.0 mmol), dimethyl disulfide (1.2 mmol), Cu(OAc)2·H2O (0.1 mmol), KOH (2.0 mmol), TBAB (0.05 mmol), and H2O (2.0 mL). The mixture was stirred at 100 °C (130 °C for bromides) for 12 h under air then cooled to r.t. The mixture was diluted with H2O (5 mL) and extracted with EtOAc (4 × 10 mL). The extracts were combined, washed with brine (3 × 10 mL), dried (MgSO4), filtered, and concentrated. The residue was purified by chromatography [silica gel, EtOAc–hexane (1:30 to 1:100)]. 4-(Methylsulfanyl)aniline (Table [2], entry 9) Yellow oil; yield: 107 mg (77%). 1H NMR (300 MHz, CDCl3): δ = 7.16 (d, J = 8.7 Hz, 2 H), 6.60 (d, J = 8.4 Hz, 2 H), 3.62 (s, 2 H), 2.39 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 145.2, 131.1, 125.7, 115.9, 18.8. GC/MS (EI): m/z = 139 [M+]. 1-Methoxy-4-(methylsulfanyl)benzene; Gram-Scale Synthesis A 50 mL sealable tube was charged with p-iodoanisole (5 mmol, 1.17 g), dimethyl disulfide (6 mmol, 0.56 g), Cu(OAc)2·H2O (0.5 mmol, 100 mg), KOH (10 mmol, 5.6 g), TBAB (0.25 mmol, 81 mg), and H2O (10 mL). The mixture was stirred at 100 °C for 12 h under air, then cooled to r.t., diluted with H2O (5 mL), and extracted with EtOAc (4 × 15 mL). The extracts were combined and washed with brine (3 × 15 mL), dried (MgSO4), filtered, and concentrated. The residue was purified by chromatography [silica gel, EtOAc–hexane (1:30)] to give a pale-yellow oil; yield: 0.56 g (73%).
    • 33a Xu H.-J, Zhao Y.-Q, Feng T, Feng Y.-S. J. Org. Chem. 2012; 77: 2878
    • 33b Wang F, Chen C, Deng G, Xi C. J. Org. Chem. 2012; 77: 4148
    • 33c He G, Huang Y, Tong Y, Zhang J, Zhao D, Zhou S, Han S. Tetrahedron Lett. 2013; 54: 5318
    • 33d Taniguchi N. Eur. J. Org. Chem. 2014; 2014: 5691
    • 33e Rostami A, Rostami A, Ghaderi A. J. Org. Chem. 2015; 80: 8694
    • 33f Liu Z, Ouyang K, Yang N. Org. Biomol. Chem. 2018; 16: 988
    • 33g Deng K.-Z, Zhang L.-L, Chen Y.-F, Xie H.-X, Xu X.-B, Xia C.-C, Ji Y.-F. Org. Biomol. Chem. 2019; 17: 7055