Synlett 2020; 31(16): 1593-1597 DOI: 10.1055/s-0040-1707129
Kinetic Study of Disulfonimide-Catalyzed Cyanosilylation of Aldehydes by Using a Method of Progress Rates
a
School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. of China eMail:
zhipengzhang@ecust.edu.cn
b
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
,
Martin Klussmann
b
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
,
Benjamin List
b
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
› Institutsangaben This work was supported by Shanghai Pujiang Program (18PJ1402200), the National Natural Science Foundation of China (21702059), and the Fundamental Research Funds for the Central Universities (222201814014). We gratefully thank the Max Planck Society, the European Research Council (Advanced Grant ‘High Performance Lewis Acid Organocatalysis, HIPOCAT’ to B.L.), and the Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology (JKVJ12001010).
Abstract
Kinetic study of organic reactions, especially multistep catalytic reactions, is crucial to in-depth understanding of reaction mechanisms. Here we report our kinetic study on the chiral disulfonimide-catalyzed cyanosilylation of an aldehyde, which revealed that two molecules of TMSCN are involved in the rate-determining C–C bond-forming step. In addition, the apparent activation energy, enthalpy of activation, and entropy of activation were deduced through a study of the temperature dependence of the reaction rates. More importantly, a novel and efficient method that makes use of the progress rates was developed to treat kinetic data obtained by continuous monitoring of the progress of a reaction by in situ FTIR.
Key words
kinetics -
progress rates -
disulfonimides -
cyanation -
organocatalysis -
aldehydes
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707129.
Supporting Information
Publikationsverlauf
Eingereicht: 08. April 2020
Angenommen: 28. April 2020
Artikel online veröffentlicht: 20. Mai 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Vogel P,
Houk KN.
In Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis. Wiley-VCH; Weinheim: 2019
2a
Nishii Y,
Ikeda M,
Hayashi Y,
Kawauchi S,
Miura M.
J. Am. Chem. Soc. 2020; 142: 1621
2b
Romine AM,
Yang KS,
Karunananda MK,
Chen JS,
Engle KM.
ACS Catal. 2019; 9: 7626
2c
Masson-Makdissi J,
Jang YJ,
Prieto L,
Taylor MS,
Lautens M.
ACS Catal. 2019; 9: 11808
2d
Shevick SL,
Obradors C,
Shenvi RA.
J. Am. Chem. Soc. 2018; 140: 12056
2e
Lee CF,
Diaz DB,
Holownia A,
Kaldas SJ,
Liew SK,
Garrett GE,
Dudding T,
Yudin AK.
Nat. Chem. 2018; 10: 1062
2f
Chung R,
Vo A,
Fokin VV,
Hein JE.
ACS Catal. 2018; 8: 7889
2g
Wendlandt AE,
Vangal P,
Jacobsen EN.
Nature 2018; 556: 447
2h
Schreyer L,
Kaib PS. J,
Wakchaure VN,
Obradors C,
Properzi R,
Lee S,
List B.
Science 2018; 362: 216
3a
Effenberger F.
Angew. Chem. Int. Ed. 1994; 33: 1555
3b
Effenberger F,
Förster S,
Wajant H.
Curr. Opin. Biotechnol. 2000; 11: 532
3c
Gröger H.
Adv. Synth. Catal. 2001; 343: 547
3d
García-Urdiales E,
Alfonso I,
Gotor V.
Chem. Rev. 2005; 105: 313
3e
Sukumaran J,
Hanefeld U.
Chem. Soc. Rev. 2005; 34: 530
3f
Holt J,
Hanefeld U.
Curr. Org. Synth. 2009; 6: 15
4a
Zeng X.-P,
Cao Z.-Y,
Wang X,
Chen L,
Zhou F,
Zhu F,
Wang C.-H,
Zhou J.
J. Am. Chem. Soc. 2016; 138: 416
4b
Laurell Nash A,
Hertzberg R,
Wen Y.-Q,
Dahlgren B,
Brinck T,
Moberg C.
Chem. Eur. J. 2016; 22: 3821
4c
Wei Y.-L,
Huang W.-S,
Cui Y.-M,
Yang K.-F,
Xu Z,
Xu L.-W.
RSC Adv. 2015; 5: 3098
4d
Lv C,
Miao C.-X,
Xu D,
Wang S,
Xia C,
Sun W.
Catal. Commun. 2012; 27: 138
4e
Uemura M,
Kurono N,
Sakai Y,
Ohkuma T.
Adv. Synth. Catal. 2012; 354: 2023
4f
Wen YQ,
Ren WM,
Lu XB.
Chin. Chem. Lett. 2011; 22: 1285
4g
Lv C,
Cheng Q,
Xu D,
Wang S,
Xia C,
Sun W.
Eur. J. Org. Chem. 2011; 3407
4h
Zhang Z,
Wang Z,
Zhang R,
Ding K.
Angew. Chem. Int. Ed. 2010; 49: 6746
4i
North M,
Omedes-Pujol M,
Williamson C.
Chem. Eur. J. 2010; 16: 11367
4j
North M,
Villuendas P,
Williamson C.
Tetrahedron 2010; 66: 1915
4k
Belokon YN,
Clegg W,
Harrington RW,
Maleev VI,
North M,
Pujol MO,
Usanov DL,
Young C.
Chem. Eur. J. 2009; 15: 2148
4l
Kurono N,
Arai K,
Uemura M,
Ohkuma T.
Angew. Chem. Int. Ed. 2008; 47: 6643
4m
Zeng B,
Zhou X,
Liu X,
Feng X.
Tetrahedron 2007; 63: 5129
4n
Liu Y,
Liu X,
Xin J,
Feng X.
Synlett 2006; 1085
4o
Lundgren S,
Wingstrand E,
Penhoat M,
Moberg C.
J. Am. Chem. Soc. 2005; 127: 11592
4p
Hatano M,
Ikeno T,
Miyamoto T,
Ishihara K.
J. Am. Chem. Soc. 2005; 127: 10776
4q
Liu X,
Qin B,
Zhou X,
He B,
Feng X.
J. Am. Chem. Soc. 2005; 127: 12224
4r
Belokon YN,
Caveda-Cepas S,
Green B,
Ikonnikov NS,
Khrustalev VN,
Larichev VS,
Moscalenko MA,
North M,
Orizu C,
Tararov VI,
Tasinazzo M,
Timofeeva GI,
Yashkina LV.
J. Am. Chem. Soc. 1999; 121: 3968
4s
North M,
Orizu C,
Tararov VI,
Ikonnikov NS,
Belokon YN,
Hibbs DE,
Hursthouse MB,
Abdul Malik KM.
Chem. Commun. 1998; 387
4t
Hamashima Y,
Sawada D,
Kanai M,
Shibasaki M.
J. Am. Chem. Soc. 1999; 121: 2641
4u
Hamashima Y,
Kanai M,
Shibasaki M.
J. Am. Chem. Soc. 2000; 122: 7412
5a
Matsumoto A,
Asano K,
Matsubara S.
Org. Lett. 2019; 21: 2688
5b
Kurimoto Y,
Nasu T,
Fujii Y,
Asano K,
Matsubara S.
Org. Lett. 2019; 21: 2156
5c
Provencher BA,
Bartelson KJ,
Liu Y,
Foxman BM,
Deng L.
Angew. Chem. Int. Ed. 2011; 50: 10565
5d
Zuend SJ,
Jacobsen EN.
J. Am. Chem. Soc. 2007; 129: 15872
5e
Peng D,
Zhou H,
Liu X,
Wang L,
Chen S,
Feng X.
Synlett 2007; 2448
5f
Qin B,
Liu X,
Shi J,
Zheng K,
Zhao H,
Feng X.
J. Org. Chem. 2007; 72: 2374
5g
Tian SK,
Deng L.
Tetrahedron 2006; 62: 11320
5h
Fuerst DE,
Jacobsen EN.
J. Am. Chem. Soc. 2005; 127: 8964
5i
Ryu DH,
Corey EJ.
J. Am. Chem. Soc. 2005; 127: 5384
5j
Wen Y,
Huang X,
Huang J,
Xiong Y,
Qin B,
Feng X.
Synlett 2005; 2445
5k
Zhou H,
Chen F.-X,
Qin B,
Feng X,
Zhang G.
Synlett 2004; 1077
5l
Li Y,
He B,
Feng X,
Zhang G.
Synlett 2004; 1598
5m
Ryu DH,
Corey EJ.
J. Am. Chem. Soc. 2004; 126: 8106
5n
Tian S.-K,
Hong R,
Deng L.
J. Am. Chem. Soc. 2003; 125: 9900
5o
Tian SK,
Deng L.
J. Am. Chem. Soc. 2001; 123: 6195
5p
Oku J,
Ito N,
Inoue S.
Makromol. Chem. 1979; 180: 1089
6a
Jin F.-Z,
Zhao C.-C,
Ma H.-C,
Chen G.-J,
Dong Y.-B.
Inorg. Chem. 2019; 58: 9253
6b
Li Z,
Liu Y,
Kang X,
Cui Y.
Inorg. Chem. 2018; 57: 9786
6c
Li J,
Ren Y,
Qi C,
Jiang H.
Chem. Commun. 2017; 53: 8223
7a
Zeng X.-P,
Sun J.-C,
Liu C,
Ji C.-B,
Peng Y.-Y.
Adv. Synth. Catal. 2019; 361: 3281
7b
Kurono N,
Ohkuma T.
ACS Catal. 2016; 6: 989
7c
Wang W,
Liu X,
Lin L,
Feng X.
Eur. J. Org. Chem. 2010; 25: 4751
7d
North M,
Usanov DL,
Young C.
Chem. Rev. 2008; 108: 5146
7e
Wingstrand E,
Lundgren S,
Penhoat M,
Moberg C.
Pure Appl. Chem. 2006; 78: 409
7f
Brunel J.-M,
Holmes IP.
Angew. Chem. Int. Ed. 2004; 43: 2752
7g
Gregory RJ. H.
Chem. Rev. 1999; 99: 3649
8
Zhang Z,
Bae HY,
Guin J,
Rabalakos C,
van Gemmeren M,
Leutzsch M,
Klussmann M,
List B.
Nat. Commun. 2016; 7: 12478
9a
Blackmond DG.
Angew. Chem. Int. Ed. 2005; 44: 4302
9b
Mathew JS,
Klussmann M,
Iwamura H,
Valera F,
Futran A,
Emanuelsson EA. C,
Blackmond DG.
J. Org. Chem. 2006; 71: 4711
9c
Zotova N,
Broadbelt LJ,
Armstrong A,
Blackmond DG.
Bioorg. Med. Chem. Lett. 2009; 19: 3934
9d
Mower MP,
Blackmond DG.
ACS Catal. 2018; 8: 5977
9e
Dechert-Schmitt A.-M,
Garnsey MR,
Wisniewska HM,
Murray JI,
Lee T,
Kung DW,
Sach N,
Blackmond DG.
ACS Catal. 2019; 9: 4508
9f
Wei B,
Sharland JC,
Lin P,
Wilkerson-Hill SM,
Fullilove FA,
McKinnon S,
Blackmond DG,
Davies HM. L.
ACS Catal. 2020; 10: 1161
10a
Burés J.
Angew. Chem. Int. Ed. 2016; 55: 2028
10b
Burés J.
Angew. Chem. Int. Ed. 2016; 55: 16084
10c
Nielsen CD.-T,
Burés J.
Chem. Sci. 2019; 10: 348
11a
Maruyama K,
Katagiri T.
J. Phys. Org. Chem. 1989; 2: 205
11b
Peltzer RM,
Gauss J,
Eisenstein O,
Cascella M.
J. Am. Chem. Soc. 2020; 142: 2984
12
Girard C,
Kagan HB.
Angew. Chem. Int. Ed. 1998; 37: 2922
13
Zhang Z,
Klussmann M,
List B.
ChemRxiv 2020; preprint DOI: 10.26434/chemrxiv.12084768.v1