Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(06): 1163-1173
DOI: 10.1055/s-0040-1706637
DOI: 10.1055/s-0040-1706637
paper
Diversity-Oriented Stereocontrolled Synthesis of Some Piperidine- and Azepane-Based Fluorine-Containing β-Amino Acid Derivatives
We are grateful to the Hungarian Research Foundation (NKFIH Nos K 119282 and K 129049) for financial support. The financial support of the GINOP-2.3.2-15-2016-00014 project is also acknowledged. This research was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008. Ministry of Human Capacities, Hungary (grant 20391-3/2018/FEKUSTRAT) is also acknowledged.
Abstract
Structural diversity-oriented synthesis of some azaheterocyclic β-amino acid derivatives has been accomplished by selective functionalization of readily available cyclodienes. The stereocontrolled synthetic concept was based on the oxidative ring cleavage of unsaturated cyclic β-amino acids derived from cycloalkadiene, followed by ring closing with double reductive amination, which furnished some conformationally restricted β-amino acid derivatives with a piperidine or azepane core.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706637.
- Supporting Information
Publication History
Received: 29 October 2020
Accepted after revision: 13 November 2020
Article published online:
14 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
- 1b Mei H, Remete AM, Zou Y, Moriwaki H, Fustero S, Kiss L, Soloshonok VA, Han J. Chin. Chem. Lett. 2020; 31: 2401
- 1c Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. Gouverneur V, Müller K. Imperial College Press; London: 2012
- 1d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 1e Zhou Y, Wang Y, Gu Z, Wang S, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 442
- 1f Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 2a Mei H, Han J, Klika KD, Izawa K, Sato T, Meanwell NA, Soloshonok VA. Eur. J. Med. Chem. 2020; 186: 111826
- 2b Mikami K, Fustero S, Sanchez-Rosello M, Acena JL, Soloshonok VA, Sorochinsky A. Synthesis 2011; 304
- 2c Vogensen SB, Jørgensen L, Madsen KK, Jurik A, Borkar N, Rosatelli E, Nielsen B, Ecker GF, Schousboe A, Clausen RP. Bioorg. Med. Chem. 2015; 23: 2480
- 2d Acena JL, Sorochinsky A, Soloshonok VA. Synthesis 2012; 44: 1591
- 2e Salwiczek M, Nyakatura EK, Gerling UI. M, Ye S, Koksch B. Chem. Soc. Rev. 2012; 41: 2135
- 2f Qiu XL, Qing FL. Eur. J. Org. Chem. 2011; 3261
- 3a Chen P, Liu G. Eur. J. Org. Chem. 2015; 4295
- 3b Jeanmart S, Edmunds AJ. F, Lamberth C, Pouliot M. Bioorg. Med. Chem. 2016; 24: 317
- 3c Kalow JA, Schmitt DE, Doyle AG. J. Org. Chem. 2012; 77: 4177
- 3d Hu XG, Hunter L. Beilstein J. Org. Chem. 2013; 9: 2696
- 4a Liang S, Wei J, Jiang L, Liu J, Mumtaz Y, Yi Y. Chem. Commun. 2019; 55: 8536
- 4b Asahina Y, Araya I, Iwase K, Iinuma F, Hosaka M, Ishizaki T. J. Med. Chem. 2005; 48: 3443
- 4c Dolfen J, Kenis S, van Hecke K, De Kimpe N, D’hooghe M. Chem. Eur J. 2014; 20: 10650
- 4d Orliac A, Routier J, Charvillon FB, Sauer WH. B, Bombrun A, Kulkarni SS, Pardo DG, Cossy J. Chem. Eur. J. 2014; 20: 3813
- 4e Fustero S, Sanz-Cervera JF, Aceña JL, Sánchez-Roselló MS. Synlett 2009; 525
- 4f Verniest G, Piron K, Van Hende E, Thuring JW, Macdonald G, Deroose F, De Kimpe N. Org. Biomol. Chem. 2010; 8: 2509
- 4g Wu L, Chen P, Liu G. Org. Lett. 2016; 18: 960
- 4h Yan N, Fang Z, Liu QQ, Guo XH, Hu XG. Org. Biomol. Chem. 2016; 14: 3469
- 4i Artamonov OS, Slobodyanyuk EY, Volochnyuk DM, Komarov IV, Tolmachev AA, Mykhailiuk PK. Eur. J. Org. Chem. 2014; 3592
- 5a Beng TK, Wilkerson-Hill SM, Sarpong R. Org. Lett. 2014; 16: 916
- 5b Patel AR, Liu F. Tetrahedron Lett. 2013; 69: 744
- 6a Cho J, Nishizono N, Iwahashi N, Saigo K, Ishida Y. Tetrahedron 2013; 69: 9252
- 6b Gu XH, Zong R, Kula NS, Baldessarini RJ, Neumeyera JL. Bioorg. Med. Chem. Lett. 2001; 11: 3049
- 6c Yang X, Chen Z, Cai Y, Huang YY, Shibata N. Green Chem. 2014; 16: 4530
- 6d Carboni A, Dagousset G, Magnier E, Masson G. Org. Lett. 2014; 16: 1240
- 7a Kiss L, Mándity IM, Fülöp F. Amino Acids 2017; 49: 1441
- 7b Grygorenko OO. Tetrahedron 2015; 71: 5169
- 7c Liu S, Gellman SH. J. Org. Chem. 2020; 85: 1718
- 7d Risseeuw M, Overhand M, Fleet GW. J, Simone MI. Amino Acids 2013; 45: 613
- 7e Kiss L, Fülöp F. Chem. Rev. 2014; 114: 1116
- 8a Ouchakour L, Ábrahámi RA, Forró E, Haukka M, Fülöp F, Kiss L. Eur. J. Org. Chem. 2019; 2202
- 8b Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Chem. Rec. 2020; 20: 120
- 8c Ábrahámi RA, Kiss L, Barrio P, Fülöp F. Tetrahedron 2016; 72: 7526
- 8d Ábrahámi RA, Kiss L, Fustero S, Fülöp F. Synthesis 2017; 49: 1206
- 8e Kiss L, Forró E, Fülöp F. Beilstein J. Org. Chem. 2015; 11: 596
- 8f Kazi B, Kiss L, Forró E, Fülöp F. Tetrahedron Lett. 2010; 51: 82
- 8g Ouchakour L, Nonn M, Kiss L. Fluorine Notes 2019; 122: 1-2 DOI: 10.17677/fn20714807.2019.01.01
- 8h Ouchakour L, Nonn N, D’hooghe M, Kiss L. J. Fluorine Chem. 2020; 232: 109466
- 9 Cherepanova M, Kiss L, Fülöp F. Tetrahedron 2014; 70: 2515
- 10 Kiss L, Forró E, Fustero S, Fülöp F. Eur. J. Org. Chem. 2011; 4993
- 11 Nonn M, Remete AM, Kiss L. Helv. Chim. Acta 2020; 103: e2000090
- 12 Kiss L, Cherepanova M, Fülöp F. Chem. Eur. J. 2013; 19: 2102
-
13 CCDC 2039976 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures