Synthesis 2021; 53(07): 1262-1270 DOI: 10.1055/s-0040-1706608
Straightforward Synthesis of Succinimide-Fused Pyrrolizidines by A Three-Component Reaction of α-Diketone, Amino Acid, and Maleimide
Peng Shen
a
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Yeting Guo
a
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Jian Wei
b
The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, P. R. of China
,
a
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Hongbin Zhai∗
b
The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, P. R. of China
,
Yufen Zhao
a
Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
› Author Affiliations We thank the National Natural Science Foundation of China (no. 22001137), the Science and Technology Planning Project of Guangdong Province (no. 2017B030314002), and the Natural Science Foundation of Zhejiang Province (no. LQ20B020003) for financial support.
Abstract
An efficient, one-pot, three-component [3+2] cycloaddition reaction of azomethine ylide obtained from α-dicarbonyl compounds (cyclic and acyclic diketone or keto ester) and amino acids with maleimides under catalyst-free conditions has been developed. This cascade protocol shows high efficiency and remarkable functional group tolerance, and the ubiquitous succinimide-fused pyrrolizidines with a highly compact and strained scaffold were obtained with high yield and excellent diastereoselectivity. Furthermore, this novel and atom-economical strategy could be performed on a gram scale with comparable reaction efficiency.
Key words
[3+2] cycloaddition -
multicomponent reaction -
α-diketone -
maleimide -
succinimide-fused pyrrolizidine
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706608.
Supporting Information
Publication History
Received: 22 October 2020
Accepted after revision: 24 October 2020
Article published online: 03 December 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Bienaymé H,
Hulme C,
Oddon G,
Schmitt P.
Chem. Eur. J. 2000; 6: 3321
1b
Dömling A,
Ugi I.
Angew. Chem. Int. Ed. 2000; 39: 3168
1c
Ramón DJ,
Yus M.
Angew. Chem. Int. Ed. 2005; 44: 1602
1d
Dömling A.
Chem. Rev. 2006; 106: 17
2a
Crider AM,
Kolczynski TM,
Yates KM.
J. Med. Chem. 1980; 23: 324
2b
Xie D,
Yao C,
Wang L,
Min W,
Xu J,
Xiao J,
Huang M,
Chen B,
Liu B,
Li X,
Jiang H.
Antimicrob. Agents Chemother. 2010; 54: 191
2c
Ding HX,
Leverett CA,
Kyne RE,
Liu KK. C,
Fink SJ,
Flick AC,
O’Donnell CJ.
Bioorg. Med. Chem. 2015; 23: 1895
3a
Wrobel J,
Dietrich A,
Woolson SA,
Millen J,
McCaleb M,
Harrison MC,
Hohman TC,
Sredy J,
Sullivan D.
J. Med. Chem. 1992; 35: 4613
3b
Groutas WC,
Brubaker MJ,
Chong LS,
Venkataraman R,
Huang H,
Epp JB,
Kuang R,
Hoidal JR.
Bioorg. Med. Chem. 1995; 3: 375
3c
Bergmeier SC,
Ismail KA,
Arason KM,
McKay S,
Bryant DL,
McKay DB.
Bioorg. Med. Chem. Lett. 2004; 14: 3739
3d
Kamiński K,
Obniska J,
Chlebek I,
Wiklik B,
Rzepka S.
Bioorg. Med. Chem. 2013; 21: 6821
4a
Shintani R,
Duan W.-L,
Nagano T,
Okada A,
Hayashi T.
Angew. Chem. Int. Ed. 2005; 44: 4611
4b
Han S,
Park J,
Kim S,
Lee SH,
Sharma S,
Mishra NK,
Jung YH,
Kim IS.
Org. Lett. 2016; 18: 4666
4c
Morita T,
Akita M,
Satoh T,
Kakiuchi F,
Miura M.
Org. Lett. 2016; 18: 4598
4d
Yu J.-T,
Chen R,
Jia H,
Pan C.
J. Org. Chem. 2018; 83: 12086
4e
Zhan B.-B,
Li Y,
Xu J.-W,
Nie X.-L,
Fan J,
Jin L,
Shi B.-F.
Angew. Chem. Int. Ed. 2018; 57: 5858
4f
Peng J,
Li C,
Khamrakulov M,
Wang J,
Liu H.
Org. Lett. 2020; 22: 1535
For selected reviews, see:
5a
Kissane M,
Maguire AR.
Chem. Soc. Rev. 2010; 39: 845
5b
Albrecht Ł,
Jiang H,
Jørgensen KA.
Angew. Chem. Int. Ed. 2011; 50: 8492
5c
Moyano A,
Rios R.
Chem. Rev. 2011; 111: 4703
5d
Adrio J,
Carretero JC.
Chem. Commun. 2014; 50: 12434
5e
Narayan R,
Potowski M,
Jia Z.-J,
Antonchick AP,
Waldmann H.
Acc. Chem. Res. 2014; 47: 1296
5f
Hashimoto T,
Maruoka K.
Chem. Rev. 2015; 115: 5366
5g
Döndas HA,
de Gracia Retamosa M,
Sansano JM.
Synthesis 2017; 49: 2819
5h
Adrio J,
Carretero JC.
Chem. Commun. 2019; 55: 11979
For selected examples, see:
5i
He Z.-L,
Teng H.-L,
Wang C.-J.
Angew. Chem. Int. Ed. 2013; 52: 2934
5j
Lauridsen VH,
Ibsen L,
Blom J,
Jørgensen KA.
Chem. Eur. J. 2016; 22: 3259
5k
Sun X.-X,
Li C,
He Y.-Y,
Zhu Z.-Q,
Mei G.-J,
Shi F.
Adv. Synth. Catal. 2017; 359: 2660
5l
Corpas J,
Ponce A,
Adrio J,
Carretero JC.
Org. Lett. 2018; 20: 3179
5m
Cheng X,
Yan D,
Dong X.-Q,
Wang C.-J.
Asian J. Org. Chem. 2020; 9: 1567
5n
Molina A,
Díaz-Tendero S,
Adrio J,
Carretero JC.
Chem. Commun. 2020; 56: 5050
6
Robertson J,
Stevens K.
Nat. Prod. Rep. 2014; 31: 1721
7a
Rajkumar V,
Babu SA,
Padmavathi R.
Tetrahedron 2016; 72: 5578
7b
Zhang X,
Qiu W,
Evans J,
Kaur M,
Jasinski JP,
Zhang W.
Org. Lett. 2019; 21: 2176
For 1,3-dipolar cycloaddition of isatin, see:
8a
Azizian J,
Asadi A,
Jadidi K.
Synth. Commun. 2001; 31: 2727
8b
Rehn S,
Bergman J,
Stensland B.
Eur. J. Org. Chem. 2004; 413
8c
Tabatabaei Rezaei SJ,
Nabid MR,
Yari A,
Ng SW.
Ultrason. Sonochem. 2011; 18: 49
8d
Lanka S,
Thennarasu S,
Perumal PT.
Tetrahedron Lett. 2012; 53: 7052
8e
Revathy K,
Lalitha A.
RSC Adv. 2014; 4: 279
8f
Haddad S,
Boudriga S,
Porzio F,
Soldera A,
Askri M,
Knorr M,
Rousselin Y,
Kubicki MM,
Golz C,
Strohmann C.
J. Org. Chem. 2015; 80: 9064
8g
Tiwari KN,
Pandurang TP,
Pant S,
Kumar R.
Tetrahedron Lett. 2016; 57: 2286
8h
Filatov AS,
Knyazev NA,
Molchanov AP,
Panikorovsky TL,
Kostikov RR,
Larina AG,
Boitsov VM,
Stepakov AV.
J. Org. Chem. 2017; 82: 959
8i
Wang Y,
Chen Y.
Tetrahedron Lett. 2017; 58: 1545
8j
Angyal A,
Demjén A,
Harmat V,
Wölfling J,
Puskás LG,
Kanizsai I.
J. Org. Chem. 2019; 84: 4273
8k
Bhandari S,
Sana S,
Sridhar B,
Shankaraiah N.
ChemistrySelect 2019; 4: 1727
8l
Keesari NR,
Mudavath S,
Krishna Rao MV,
Sridhar B,
Subba Reddy BV.
Synth. Commun. 2020; 50: 973
For 1,3-dipolar cycloaddition of proline, see:
9a
Felluga F,
Forzato C,
Nitti P,
Pitacco G,
Valentin E,
Zangrando E.
J. Heterocycl. Chem. 2010; 47: 664
9b
Zhang X,
Liu M,
Zhang W,
Legris M,
Zhang W.
J. Fluorine Chem. 2017; 204: 18
9c
Chen L.-M,
Liu Z.-H,
Nie X.-F,
Guo X.-Q,
Kang T.-R.
Synlett 2018; 29: 2390
9d
Jia Z.-J,
Takayama H,
Futamura Y,
Aono H,
Bauer JO,
Strohmann C,
Antonchick AP,
Osada H,
Waldmann H.
J. Org. Chem. 2018; 83: 7033
9e
Madhavan S,
Okamoto S.
ChemCatChem 2018; 10: 2014
10a
Zhao H,
Shao X,
Wang T,
Zhai S,
Qiu S,
Tao C,
Wang H,
Zhai H.
Chem. Commun. 2018; 54: 4927
10b
Zhao H,
Wang T,
Qing Z,
Zhai H.
Chem. Commun. 2020; 56: 5524
11
Chen L,
Sun J,
Xie J,
Yan C.-G.
Org. Biomol. Chem. 2016; 14: 6497
12
Mali PR,
Khomane NB,
Sridhar B,
Meshram HM,
Likhar PR.
New J. Chem. 2018; 42: 13819
13a
Babu AR. S,
Raghunathan R.
J. Heterocycl. Chem. 2006; 43: 1357
13b
Suresh Babu AR,
Raghunathan R.
Tetrahedron Lett. 2007; 48: 305
13c
Ranjith Kumar R,
Perumal S,
Manju SC,
Bhatt P,
Yogeeswari P,
Sriram D.
Bioorg. Med. Chem. Lett. 2009; 19: 3461
13d
Dandia A,
Jain AK,
Laxkar AK,
Bhati DS.
Tetrahedron Lett. 2013; 54: 3180
13e
Kumar RS,
Almansour AI,
Arumugam N,
Menéndez JC,
Osman H,
Kumar RR.
Synthesis 2015; 47: 2721
13f
Sirisha N,
Raghunathan R,
Srikumar M.
Synth. Commun. 2017; 47: 1256
13g
Yan L.-J,
Wang J.-L,
Xu D,
Burgess KS,
Zhu A.-F,
Rao Y.-Y,
Chen X.-B,
Wang Y.-C.
ChemistrySelect 2018; 3: 662
14 CCDC 2032035 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.