Synthesis 2021; 53(07): 1262-1270
DOI: 10.1055/s-0040-1706608
paper

Straightforward Synthesis of Succinimide-Fused Pyrrolizidines by A Three-Component Reaction of α-Diketone, Amino Acid, and Maleimide

Peng Shen
a   Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Yeting Guo
a   Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Jian Wei
b   The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, P. R. of China
,
Hua Zhao
a   Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
,
Hongbin Zhai
b   The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, P. R. of China
,
Yufen Zhao
a   Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (no. 22001137), the Science and Technology Planning Project of Guangdong Province (no. 2017B030314002), and the Natural Science Foundation of Zhejiang Province (no. LQ20B020003) for financial support.


Abstract

An efficient, one-pot, three-component [3+2] cycloaddition reaction of azomethine ylide obtained from α-dicarbonyl compounds (cyclic and acyclic diketone or keto ester) and amino acids with maleimides under catalyst-free conditions has been developed. This cascade protocol shows high efficiency and remarkable functional group tolerance, and the ubiquitous succinimide-fused pyrrolizidines with a highly compact and strained scaffold were obtained with high yield and excellent diastereoselectivity. Furthermore, this novel and atom-economical strategy could be performed on a gram scale with comparable reaction efficiency.

Supporting Information



Publication History

Received: 22 October 2020

Accepted after revision: 24 October 2020

Article published online:
03 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Crider AM, Kolczynski TM, Yates KM. J. Med. Chem. 1980; 23: 324
    • 2b Xie D, Yao C, Wang L, Min W, Xu J, Xiao J, Huang M, Chen B, Liu B, Li X, Jiang H. Antimicrob. Agents Chemother. 2010; 54: 191
    • 2c Ding HX, Leverett CA, Kyne RE, Liu KK. C, Fink SJ, Flick AC, O’Donnell CJ. Bioorg. Med. Chem. 2015; 23: 1895
    • 3a Wrobel J, Dietrich A, Woolson SA, Millen J, McCaleb M, Harrison MC, Hohman TC, Sredy J, Sullivan D. J. Med. Chem. 1992; 35: 4613
    • 3b Groutas WC, Brubaker MJ, Chong LS, Venkataraman R, Huang H, Epp JB, Kuang R, Hoidal JR. Bioorg. Med. Chem. 1995; 3: 375
    • 3c Bergmeier SC, Ismail KA, Arason KM, McKay S, Bryant DL, McKay DB. Bioorg. Med. Chem. Lett. 2004; 14: 3739
    • 3d Kamiński K, Obniska J, Chlebek I, Wiklik B, Rzepka S. Bioorg. Med. Chem. 2013; 21: 6821
    • 4a Shintani R, Duan W.-L, Nagano T, Okada A, Hayashi T. Angew. Chem. Int. Ed. 2005; 44: 4611
    • 4b Han S, Park J, Kim S, Lee SH, Sharma S, Mishra NK, Jung YH, Kim IS. Org. Lett. 2016; 18: 4666
    • 4c Morita T, Akita M, Satoh T, Kakiuchi F, Miura M. Org. Lett. 2016; 18: 4598
    • 4d Yu J.-T, Chen R, Jia H, Pan C. J. Org. Chem. 2018; 83: 12086
    • 4e Zhan B.-B, Li Y, Xu J.-W, Nie X.-L, Fan J, Jin L, Shi B.-F. Angew. Chem. Int. Ed. 2018; 57: 5858
    • 4f Peng J, Li C, Khamrakulov M, Wang J, Liu H. Org. Lett. 2020; 22: 1535

      For selected reviews, see:
    • 5a Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
    • 5b Albrecht Ł, Jiang H, Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 5c Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 5d Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 5e Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 5f Hashimoto T, Maruoka K. Chem. Rev. 2015; 115: 5366
    • 5g Döndas HA, de Gracia Retamosa M, Sansano JM. Synthesis 2017; 49: 2819
    • 5h Adrio J, Carretero JC. Chem. Commun. 2019; 55: 11979

    • For selected examples, see:
    • 5i He Z.-L, Teng H.-L, Wang C.-J. Angew. Chem. Int. Ed. 2013; 52: 2934
    • 5j Lauridsen VH, Ibsen L, Blom J, Jørgensen KA. Chem. Eur. J. 2016; 22: 3259
    • 5k Sun X.-X, Li C, He Y.-Y, Zhu Z.-Q, Mei G.-J, Shi F. Adv. Synth. Catal. 2017; 359: 2660
    • 5l Corpas J, Ponce A, Adrio J, Carretero JC. Org. Lett. 2018; 20: 3179
    • 5m Cheng X, Yan D, Dong X.-Q, Wang C.-J. Asian J. Org. Chem. 2020; 9: 1567
    • 5n Molina A, Díaz-Tendero S, Adrio J, Carretero JC. Chem. Commun. 2020; 56: 5050
  • 6 Robertson J, Stevens K. Nat. Prod. Rep. 2014; 31: 1721
    • 7a Rajkumar V, Babu SA, Padmavathi R. Tetrahedron 2016; 72: 5578
    • 7b Zhang X, Qiu W, Evans J, Kaur M, Jasinski JP, Zhang W. Org. Lett. 2019; 21: 2176

      For 1,3-dipolar cycloaddition of isatin, see:
    • 8a Azizian J, Asadi A, Jadidi K. Synth. Commun. 2001; 31: 2727
    • 8b Rehn S, Bergman J, Stensland B. Eur. J. Org. Chem. 2004; 413
    • 8c Tabatabaei Rezaei SJ, Nabid MR, Yari A, Ng SW. Ultrason. Sonochem. 2011; 18: 49
    • 8d Lanka S, Thennarasu S, Perumal PT. Tetrahedron Lett. 2012; 53: 7052
    • 8e Revathy K, Lalitha A. RSC Adv. 2014; 4: 279
    • 8f Haddad S, Boudriga S, Porzio F, Soldera A, Askri M, Knorr M, Rousselin Y, Kubicki MM, Golz C, Strohmann C. J. Org. Chem. 2015; 80: 9064
    • 8g Tiwari KN, Pandurang TP, Pant S, Kumar R. Tetrahedron Lett. 2016; 57: 2286
    • 8h Filatov AS, Knyazev NA, Molchanov AP, Panikorovsky TL, Kostikov RR, Larina AG, Boitsov VM, Stepakov AV. J. Org. Chem. 2017; 82: 959
    • 8i Wang Y, Chen Y. Tetrahedron Lett. 2017; 58: 1545
    • 8j Angyal A, Demjén A, Harmat V, Wölfling J, Puskás LG, Kanizsai I. J. Org. Chem. 2019; 84: 4273
    • 8k Bhandari S, Sana S, Sridhar B, Shankaraiah N. ChemistrySelect 2019; 4: 1727
    • 8l Keesari NR, Mudavath S, Krishna Rao MV, Sridhar B, Subba Reddy BV. Synth. Commun. 2020; 50: 973

      For 1,3-dipolar cycloaddition of proline, see:
    • 9a Felluga F, Forzato C, Nitti P, Pitacco G, Valentin E, Zangrando E. J. Heterocycl. Chem. 2010; 47: 664
    • 9b Zhang X, Liu M, Zhang W, Legris M, Zhang W. J. Fluorine Chem. 2017; 204: 18
    • 9c Chen L.-M, Liu Z.-H, Nie X.-F, Guo X.-Q, Kang T.-R. Synlett 2018; 29: 2390
    • 9d Jia Z.-J, Takayama H, Futamura Y, Aono H, Bauer JO, Strohmann C, Antonchick AP, Osada H, Waldmann H. J. Org. Chem. 2018; 83: 7033
    • 9e Madhavan S, Okamoto S. ChemCatChem 2018; 10: 2014
    • 10a Zhao H, Shao X, Wang T, Zhai S, Qiu S, Tao C, Wang H, Zhai H. Chem. Commun. 2018; 54: 4927
    • 10b Zhao H, Wang T, Qing Z, Zhai H. Chem. Commun. 2020; 56: 5524
  • 11 Chen L, Sun J, Xie J, Yan C.-G. Org. Biomol. Chem. 2016; 14: 6497
  • 12 Mali PR, Khomane NB, Sridhar B, Meshram HM, Likhar PR. New J. Chem. 2018; 42: 13819
    • 13a Babu AR. S, Raghunathan R. J. Heterocycl. Chem. 2006; 43: 1357
    • 13b Suresh Babu AR, Raghunathan R. Tetrahedron Lett. 2007; 48: 305
    • 13c Ranjith Kumar R, Perumal S, Manju SC, Bhatt P, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2009; 19: 3461
    • 13d Dandia A, Jain AK, Laxkar AK, Bhati DS. Tetrahedron Lett. 2013; 54: 3180
    • 13e Kumar RS, Almansour AI, Arumugam N, Menéndez JC, Osman H, Kumar RR. Synthesis 2015; 47: 2721
    • 13f Sirisha N, Raghunathan R, Srikumar M. Synth. Commun. 2017; 47: 1256
    • 13g Yan L.-J, Wang J.-L, Xu D, Burgess KS, Zhu A.-F, Rao Y.-Y, Chen X.-B, Wang Y.-C. ChemistrySelect 2018; 3: 662
  • 14 CCDC 2032035 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.