Synlett 2022; 33(04): 339-345
DOI: 10.1055/s-0040-1706034
account
Late-Stage Functionalization

Site-Selective Late-Stage C–H Functionalization via Thianthrenium Salts

Florian Berger
,
Tobias Ritter
We thank the Max-Planck-Instititut für Kohlenforschung, Mülheim an der Ruhr and UCB Biopharma for funding.


Abstract

The high abundance of C–H bonds in organic molecules makes C–H functionalization a powerful approach to quickly increase the complexity of an organic molecule. However, the high abundance of C–H bonds also provides a challenge to C–H functionalization reactions: selectivity. While most C–H functionalization reactions produce mixtures of different products for most substrates, we have developed a highly selective method for aromatic C–H functionalization via sulfonium salts. The reaction does not require a certain directing group to be selective. The introduced functional group is a sulfonium group, which participates in various follow-up reactions such as palladium-catalyzed cross-coupling reactions and photoredox catalysis. Here we discuss our pathway to develop the reaction as well as its scope and utility.

1 Introduction

2 Site-Selective Synthesis of Sulfonium Salts

3 Sulfonium Salts in Palladium-Catalyzed Cross-Coupling

4 Sulfonium Salts in Photoredox Catalysis

5 Sulfur(IV) Reductive Elimination

6 Cine Substitution

7 Conclusion



Publication History

Received: 04 March 2021

Accepted after revision: 19 March 2021

Article published online:
13 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Gu Q, Vessally E. RSC Adv. 2020; 10: 16765
  • 2 Campbell MG, Ritter T. Chem. Rev. 2015; 115: 612
  • 3 Caron S. Org. Process Res. Dev. 2020; 24: 470
  • 4 Yamamoto K, Li J, Garber JA. O, Rolfes JD, Boursalian GB, Borghs JC, Genicot C, Jacq J, van Gastel M, Neese F, Ritter T. Nature 2018; 554: 511
  • 5 Boursalian GB, Ham WS, Mazzotti AR, Ritter T. Nat. Chem. 2016; 8: 810
  • 6 Ham WS, Hillenbrand J, Jacq J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 532
  • 7 Rössler SL, Jelier BJ, Tripet PF, Shemet A, Jeschke G, Togni A, Carreira EM. Angew. Chem. Int. Ed. 2019; 58: 526
  • 8 Lucken EA. C. J. Chem. Soc. 1962; 4963
  • 9 Silber JJ, Shine HJ. J. Org. Chem. 1971; 36: 2923
  • 10 Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
  • 11 Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, Kondratiuk M, Bohdan K, Ritter T. Angew. Chem. 2019; 59: 1956
  • 12 Chen J, Li J, Plutschack MB, Berger F, Ritter T. Angew. Chem. Int. Ed. 2020; 132: 5665
  • 13 Alvarez EM, Plutschack MB, Berger F, Ritter T. Org. Lett. 2020; 22: 4593
  • 14 Engl PS, Häring AP, Berger F, Berger G, Perez-Bitrian A, Ritter T. J. Am. Chem. Soc. 2019; 141: 13346
  • 15 Li J, Chen J, Sang R, Ham W.-S, Plutschack MB, Berger F, Chabbra S, Schnegg A, Genicot C, Ritter T. Nat. Chem. 2020; 12: 56
  • 16 Ye F, Berger F, Jia H, Ford J, Wortman A, Börgel J, Genicot C, Ritter T. Angew. Chem. 2019; 58: 14615
  • 17 Sang R, Korkis SE, Su W, Ye F, Engl PS, Berger F, Ritter T. Angew. Chem. 2019; 58: 16161
  • 18 Dennis JM, White NA, Liu RY, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 4721
  • 19 Benati L, Montevecchi PC, Tundo T, Zenardi G. J. Chem. Soc., Perkin Trans. 1 1974; 1272
  • 20 Ogawa S, Matsunaga Y, Sato S, Erata T, Furukawa N. Tetrahedron Lett. 1992; 33: 93
  • 21 Gendron T, Sander K, Cybulska K, Benhamou L, Sin P, Khan A, Wood M, Porter MJ, Arstad E. J. Am. Chem. Soc. 2018; 140: 11125
  • 22 Berger F, Alvarez EM, Frank N, Bohdan K, Kondratiuk M, Torkowski L, Engl PS, Barletta J, Ritter T. Org. Lett. 2020; 22: 5671