CC BY-NC-ND 4.0 · Eur J Dent 2011; 05(01): 024-031
DOI: 10.1055/s-0039-1698855
Original Article
Dental Investigation Society

The Effect of Xylitol on the Composition of the Oral Flora: A Pilot Study

Eva Söderling
a   Institute of Dentistry, University of Turku, Finland.
,
Aino Hirvonen
b   Institute of Dentistry, University of Oulu, Finland.
,
Sara Karjalainen
a   Institute of Dentistry, University of Turku, Finland.
,
Margherita Fontana
c   School of Dentistry, University of Michigan, USA.
,
Diana Catt
d   School of Dentistry, Indiana University, USA.
,
Liisa Seppä
e   Institute of Dentistry, University of Oulu, Finland.
› Author Affiliations
Further Information

Publication History

Publication Date:
30 September 2019 (online)

ABSTRACT

Objectives: Our aim was to investigate the effect of short-term xylitol consumption on the microbial composition of plaque and saliva. Methods: Twelve volunteers (22-38 yrs) harboring mutans streptococci (MS) participated in the randomized, double-blind, cross-over study. The experimental chewing gum contained 65% xylitol while the control gum contained 63% sorbitol and 2% maltitol w/w. The polyol dose was approximately 6 g/day. Stimulated saliva and plaque samples were collected before and after the two four-week test periods. The samples were cultured for MS, total streptococci, lactobacilli, and total facultatives. A part of the samples were subjected to DNA-DNA hybridizations of 14 microbial plaque species: Actinomyces naeslundii, A. viscosus, Fusobacterium nucleatum, Lactobacillus acidophilus, L. fermentum, L. paracasei, L. rhamnose, L. plantarum, Streptococcus gordonii, S. oralis, S. parasanguis, S. salivarius, S. sanguinis, Veillonella parvula. Results: The MS counts of the plaque samples collected from “caries-prone” tooth sites decreased significantly (P<.01) in the xylitol gum group but not in the sorbitol gum group. Also the plaque MS percentage decreased significantly in the xylitol gum group (P<.01). The salivary MS counts did not decrease either in the xylitol or in the sorbitol gum groups. Nor were changes detected in the salivary levels of total streptococci or lactobacilli. The DNA-DNA hybridization assay revealed no study-induced changes in the microbial composition of the dental plaque. Conclusions: Within the limitations of this pilot study, xylitol consumption reduced MS counts in plaque but appeared not to affect the microbial composition of plaque or saliva in general. (Eur J Dent 2011;5:24-31)

 
  • REFERENCES

  • 1 Havenaar R, Huis in 't Veld JHJ, Backer Dirks O, de Stoppelaar JD. Some bacteriological aspects of sugar substitutes. Health and Sugar Substitutes. Proc. ERGOB Conf., Geneva 1978, pp. 192-198 (Karger, Basel 1978).
  • 2 Mäkinen KK, Mäkinen PL, Pape HR Jr, Peldyak J, Hujoel P, Isotupa KP, Söderling E, Isokangas PJ, Allen P, Bennett C. Conclusion and review of the Michigan Xylitol Programme (1986-1995) for the prevention of dental caries. Int Dent J 1996;46:22-34.
  • 3 Ly KA, Milgrom P, Rothen M. The potential of dental-protective chewing gum in oral health interventions. J Am Dent Assoc 2008;139:553-563.
  • 4 Machiulskiene V, Nyvad B, Baelum V. Caries preventive effect of sugar-substituted chewing gum. Community Dent Oral Epidemiol 2001;29:278-288.
  • 5 Hayes C. Xylitol gum decreases the decayed, missing, and filled surfaces (DMFS) score by an average of 1.9. J Evidence- Based Dent Pract 2002;2:14-15.
  • 6 Milgrom P, Ly KA, Tut OK, Mancl L, Roberts MC, Briand K, Gancio MJ. Xylitol pediatric topical oral syrup to prevent dental caries: a double-blind randomized clinical trial on efficacy. Arch Pediatr Adolesc Med 2009;163:601-607.
  • 7 Söderling EM. Xylitol, mutans streptococci, and dental plaque. Adv Dent Res 2009;21:74-78.
  • 8 Söderling E, Isokangas P, Pienihäkkinen K, Tenovuo J. Influence of maternal xylitol consumption on acquisition of mutans streptococci by infants. J Dent Res 2000;79:882- 887.
  • 9 Thorild I, Lindau B, Twetman S. Effect of maternal use of chewing gums containing xylitol, chlorhexidine or fluoride on mutans streptococci colonization in the mothers' infant children. Oral Health Prev Dent 2003;1:53-57.
  • 10 Fontana M, Catt D, Eckert GJ, Ofner S, Toro M, Gregory RL, Zandona AF, Eggertsson H, Jackson R, Chin J, Zero D, Sissons CH. Xylitol: effects on the acquisition of cariogenic species in infants. Pediatr Dent 2009;31:257-266.
  • 11 Nakai Y, Shinga-Ishihara C, Kaji M, Moriya K, Murakami- Yamanaka K, Takimura M. Xylitol gum and maternal transmission of mutans streptococci. J Dent Res 2010;89:56-60.
  • 12 Bradshaw DJ, Marsh PD. Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat. Caries Res 1994;28:251-256.
  • 13 Loesche WJ, Grossman NS, Earnest R, Corpron R. The effect of chewing xylitol gum on the plaque and saliva levels of Streptococcus mutans. J Am Dent Assoc 1984;108:587- 592.
  • 14 Gold OG, Jordan HV, Van Houte J. A selective medium for Streptococcus mutans. Arch Oral Biol 1973;18:1357-1364.
  • 15 Van Palenstein Helderman WH, Isseldijk M, Huis in't Veld JH. A selective medium for the two major subgroups of the bacterium Streptococcus mutans isolated from human dental plaque and saliva. Arch Oral Biol 1983;28:599-603.
  • 16 Gellen LS, Wall-Manning GM, Sissons CH. Checkerboard DNA-DNA hybridization technology using digoxigenin detection. Methods Mol Biol 2007;353:39-67.
  • 17 Al-Ahmad A, Auschill TM, Braun G, Hellwig E, Arweiler NB. Overestimation of Streptococcus mutans prevalence by nested PCR detection of the 16S rRNA gene. J Med Microbiol 2006;55:109-113.
  • 18 Chen CC, Teng LJ, Kaiung S, Chang TC. Identification of clinically relevant viridans streptococci by an oligonucleotide array. J Clin Microbiol 2005;43:1515-1521.
  • 19 Suzuki N, Yoshida A, Nakano Y. Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin Med Res 2005;3:176-185.
  • 20 Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 2002;40:1001-1009.
  • 21 Haarman M, Knol J. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 2006;72:2359-2365.
  • 22 Trahan L, Bareil M, Gauthier L, Vadeboncoeur C. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res 1985;19:53-63.
  • 23 Vadeboncoeur C, Trahan L, Mouton C, Mayrand D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J Dent Res 1983;62:882-884.
  • 24 Miyasawa-Hori H, Aizawa S, Takahashi N. Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 2006;21:201-205.
  • 25 Söderling EM, Hietala-Lenkkeri AM. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr Microbiol 2010;60:25-29.
  • 26 Loo CY, Mitrakul K, Voss IB, Hughes CV, Ganeshkumar N. Involvement of an inducible fructose phosphotransferase operon in Streptococcus gordonii biofilm formation. J Bacteriol 2003;185:6241-6254.
  • 27 Kontiokari T, Uhari M, Koskela M. Effect on xylitol on growth of nasopharyngeal bacteria in vitro. Antimicrob Agents Chemother 1995;39:1820-1823.
  • 28 Rogers AH, Pilowsky KA, Zilm PS, Gully NJ. Effects of pulsing with xylitol on mixed continuous cultures of oral streptococci. Aust Dent J 1991;36:231-235.
  • 29 Saier MH Jr, Ye JJ, Klinke S, Nino E. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J Bacteriol 1996;178:314-316.
  • 30 Kaplan H, Hutkins RW. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol 2000;66:2682-2684.
  • 31 Helanto M, Aarnikunnas J, Palva A, Leisola M, Nyyssöla A. Characterization of genes involved in fructose utilization by Lactobacillus fermentum. Arch Microbiol 2006;186:51-59.
  • 32 Mäkinen KK, Alanen P, Isokangas P, Isotupa K, Säderling E, Mäkinen PL, Wenhui W, Weijian W, Xiaochi C, Yi W, Boxue Z. Thirty-nine-month xylitol chewing-gum programme in initially 8-year-old school children: a feasibility study focusing on mutans streptococci and lactobacilli. Int Dent J 2008;58:41-50.
  • 33 Milgrom P, Ly KA, Roberts MC, Rothen M, Mueller G, Yamaguchi DK. Mutans streptococci dose response to xylitol chewing gum. J Dent Res 2006;85:177-181.
  • 34 Mäkinen KK. An end to crossover designs for studies on the effect of sugar substitutes on caries? Caries Res 2009;43:331-333.
  • 35 Trahan L. Xylitol: a review of its action on mutans streptococci and dental plaque – its clinical significance. Int Dent J 1995;45:77-92.