Semin Respir Crit Care Med 2019; 40(06): 715-726
DOI: 10.1055/s-0039-1694021
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cystic Fibrosis: Pathophysiology of Lung Disease

Christelle Bergeron
1   Respiratory Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Quebec, Canada
,
André M. Cantin
1   Respiratory Division, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Quebec, Canada
2   Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Quebec, Canada
› Author Affiliations
Funding C.B. has been awarded a Cystic Fibrosis Canada Clinical fellowship grant for 2018–2019 and is currently enrolled in the Adult Cystic Fibrosis Fellowship program at the University of Toronto (St. Michael's Hospital).
A.M.C. is a member of the FQRS-funded Centre de Recherche Clinique du CHUS, and was supported by a grant from the Canadian Institutes of Health Research.
Further Information

Publication History

Publication Date:
28 October 2019 (online)

Abstract

Cystic fibrosis (CF) is a common, life-threatening, multisystemic, autosomal recessive disorder. In the last few years, giant steps have been made with regard to the understanding of CF pathophysiology, allowing the scientific community to propose mechanisms that cause the myriad of CF clinical manifestations. Following the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, the structure and function of the CFTR protein were described. Since then, more than 2,000 variants of the CFTR gene and their impact on the amount and function of the CFTR protein have been reported. The role of the CFTR protein as an ion channel transporting chloride and bicarbonate and its repercussions on different epithelial cell-lined organs and mucus are now better understood. Mechanisms behind susceptibility to infection in CF have also been proposed and include abnormalities in the composition, volume and acidity of the airway surface liquid, changes in the submucosal gland's anatomy and function, and deficiencies in the mucociliary clearance system. Numerous hypotheses explaining the excessive inflammatory response in CF are also debated and involve impaired mucociliary clearance, persistent hypoxia, lipid abnormalities, protease and antiprotease disproportion, and oxidant and antioxidant imbalance. The purpose of this review is to summarize our current knowledge of CF pathophysiology, including significant historic discoveries and most recent breakthroughs, and to improve understanding and awareness of this fatal disease.

 
  • References

  • 1 Elborn JS. Cystic fibrosis. Lancet 2016; 388 (10059): 2519-2531
  • 2 O'Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373 (9678): 1891-1904
  • 3 Andersen DH. Cystic fibrosis of the pancreas and its relation to celiac disease. Am J Dis Child 1938; 56: 344-399
  • 4 Quinton PM. Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 1999; 79 (1, Suppl): S3-S22
  • 5 Di Sant'Agnese P, Darling RC, Perara GA, Shea E. Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas. AMA Am J Dis Child 1953; 86 (05) 618-619 , discussion, 619
  • 6 Di Sant'Agnese PA, Darling RC, Perera GA, Shea E. Sweat electrolyte disturbances associated with childhood pancreatic disease. Am J Med 1953; 15 (06) 777-784
  • 7 Riordan JR, Rommens JM, Kerem B. , et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245 (4922): 1066-1073
  • 8 Kerem B, Rommens JM, Buchanan JA. , et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245 (4922): 1073-1080
  • 9 Rommens JM, Iannuzzi MC, Kerem B. , et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245 (4922): 1059-1065
  • 10 Riordan JR. CFTR function and prospects for therapy. Annu Rev Biochem 2008; 77: 701-726
  • 11 Castellani C, Cuppens H, Macek Jr M. , et al. Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros 2008; 7 (03) 179-196
  • 12 Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14 (04) 419-430
  • 13 Keogh RH, Szczesniak R, Taylor-Robinson D, Bilton D. Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: a longitudinal study using UK patient registry data. J Cyst Fibros 2018; 17 (02) 218-227
  • 14 Zuelzer WW, Newton Jr WA. The pathogenesis of fibrocystic disease of the pancreas; a study of 36 cases with special reference to the pulmonary lesions. Pediatrics 1949; 4 (01) 53-69
  • 15 Knowles M, Gatzy J, Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med 1981; 305 (25) 1489-1495
  • 16 Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983; 301 (5899): 421-422
  • 17 Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 2007; 58: 157-170
  • 18 Knowles M, Gatzy J, Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest 1983; 71 (05) 1410-1417
  • 19 Cant N, Pollock N, Ford RC. CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52: 15-25
  • 20 Gustafsson JK, Ermund A, Ambort D. , et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med 2012; 209 (07) 1263-1272
  • 21 Gentzsch M, Dang H, Dang Y. , et al. The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem 2010; 285 (42) 32227-32232
  • 22 Gabriel SE, Clarke LL, Boucher RC, Stutts MJ. CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 1993; 363 (6426): 263-268
  • 23 Chmiel JF, Davis PB. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection?. Respir Res 2003; 4 (08) 1-12
  • 24 Matsui H, Grubb BR, Tarran R. , et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 1998; 95 (07) 1005-1015
  • 25 Shah VS, Meyerholz DK, Tang XX. , et al. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 2016; 351 (6272): 503-507
  • 26 Pezzulo AA, Tang XX, Hoegger MJ. , et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 2012; 487 (7405): 109-113
  • 27 Kopelman H, Corey M, Gaskin K, Durie P, Weizman Z, Forstner G. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology 1988; 95 (02) 349-355
  • 28 Quinton PM. Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda) 2007; 22: 212-225
  • 29 Farrell PM, White TB, Ren CL. , et al. Diagnosis of cystic fibrosis: consensus guidelines from the Cystic Fibrosis Foundation. J Pediatr 2017; 181S: S4-S15 , 15.e1
  • 30 Meyerholz DK, Stoltz DA, Namati E. , et al. Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 2010; 182 (10) 1251-1261
  • 31 Chang EH, Pezzulo AA, Meyerholz DK. , et al. Sinus hypoplasia precedes sinus infection in a porcine model of cystic fibrosis. Laryngoscope 2012; 122 (09) 1898-1905
  • 32 Wilschanski M, Zielenski J, Markiewicz D. , et al. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr 1995; 127 (05) 705-710
  • 33 Tsui LC. The spectrum of cystic fibrosis mutations. Trends Genet 1992; 8 (11) 392-398
  • 34 Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993; 73 (07) 1251-1254
  • 35 De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med 2016; 4 (08) 662-674
  • 36 Taylor-Cousar JL, Munck A, McKone EF. , et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med 2017; 377 (21) 2013-2023
  • 37 Wainwright CE, Elborn JS, Ramsey BW. , et al; TRAFFIC Study Group; TRANSPORT Study Group. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med 2015; 373 (03) 220-231
  • 38 Ramsey BW, Davies J, McElvaney NG. , et al; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011; 365 (18) 1663-1672
  • 39 Marson FAL, Bertuzzo CS, Ribeiro JD. Classification of CFTR mutation classes. Lancet Respir Med 2016; 4 (08) e37-e38
  • 40 Blackman SM, Deering-Brose R, McWilliams R. , et al. Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology 2006; 131 (04) 1030-1039
  • 41 Ahmadi S, Xia S, Wu YS. , et al. SLC6A14, an amino acid transporter, modifies the primary CF defect in fluid secretion. Elife 2018; 13: 7 . pii: e37963. doi: 10.7554/eLife.37963
  • 42 Sun L, Rommens JM, Corvol H. , et al. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis. Nat Genet 2012; 44 (05) 562-569
  • 43 Gong J, Wang F, Xiao B. , et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet 2019; 15 (02) e1008007
  • 44 Vanscoy LL, Blackman SM, Collaco JM. , et al. Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med 2007; 175 (10) 1036-1043
  • 45 Corey M, Edwards L, Levison H, Knowles M. Longitudinal analysis of pulmonary function decline in patients with cystic fibrosis. J Pediatr 1997; 131 (06) 809-814
  • 46 Merlo CA, Boyle MP. Modifier genes in cystic fibrosis lung disease. J Lab Clin Med 2003; 141 (04) 237-241
  • 47 Guillot L, Beucher J, Tabary O, Le Rouzic P, Clement A, Corvol H. Lung disease modifier genes in cystic fibrosis. Int J Biochem Cell Biol 2014; 52: 83-93
  • 48 Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015; 372 (04) 351-362
  • 49 Stoltz DA, Meyerholz DK, Pezzulo AA. , et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2010; 2 (29) 29ra31
  • 50 Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 1996; 85 (02) 229-236
  • 51 Song Y, Salinas D, Nielson DW, Verkman AS. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am J Physiol Cell Physiol 2006; 290 (03) C741-C749
  • 52 Dajani R, Zhang Y, Taft PJ. , et al. Lysozyme secretion by submucosal glands protects the airway from bacterial infection. Am J Respir Cell Mol Biol 2005; 32 (06) 548-552
  • 53 Widdicombe JH, Wine JJ. Airway gland structure and function. Physiol Rev 2015; 95 (04) 1241-1319
  • 54 Engelhardt JF, Yankaskas JR, Ernst SA. , et al. Submucosal glands are the predominant site of CFTR expression in the human bronchus. Nat Genet 1992; 2 (03) 240-248
  • 55 Kelley TJ, Drumm ML. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest 1998; 102 (06) 1200-1207
  • 56 Pier GB, Grout M, Zaidi TS. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A 1997; 94 (22) 12088-12093
  • 57 Cannon CL, Kowalski MP, Stopak KS, Pier GB. Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol 2003; 29 (02) 188-197
  • 58 Worlitzsch D, Tarran R, Ulrich M. , et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 2002; 109 (03) 317-325
  • 59 Scortegagna M, Cataisson C, Martin RJ. , et al. HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling. Blood 2008; 111 (07) 3343-3354
  • 60 Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem Soc Trans 2017; 45 (05) 1105-1115
  • 61 Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510 (7503): 92-101
  • 62 Maqbool A, Schall JI, Gallagher PR, Zemel BS, Strandvik B, Stallings VA. Relation between dietary fat intake type and serum fatty acid status in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2012; 55 (05) 605-611
  • 63 Freedman SD, Blanco PG, Zaman MM. , et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 2004; 350 (06) 560-569
  • 64 Strandvik B, Gronowitz E, Enlund F, Martinsson T, Wahlström J. Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J Pediatr 2001; 139 (05) 650-655
  • 65 Werner A, Bongers ME, Bijvelds MJ, de Jonge HR, Verkade HJ. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis. J Lipid Res 2004; 45 (12) 2277-2286
  • 66 Guilbault C, Wojewodka G, Saeed Z. , et al. Cystic fibrosis fatty acid imbalance is linked to ceramide deficiency and corrected by fenretinide. Am J Respir Cell Mol Biol 2009; 41 (01) 100-106
  • 67 Teichgräber V, Ulrich M, Endlich N. , et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 2008; 14 (04) 382-391
  • 68 Adams C, Icheva V, Deppisch C. , et al. Long-term pulmonal therapy of cystic fibrosis-patients with amitriptyline. Cell Physiol Biochem 2016; 39 (02) 565-572
  • 69 Mall MA, Hartl D. CFTR: cystic fibrosis and beyond. Eur Respir J 2014; 44 (04) 1042-1054
  • 70 Sly PD, Gangell CL, Chen L. , et al; AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 2013; 368 (21) 1963-1970
  • 71 Stick SM, Brennan S, Murray C. , et al; Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF). Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 2009; 155 (05) 623.e1-628.e1
  • 72 Mott LS, Gangell CL, Murray CP, Stick SM, Sly PD. ; AREST CF. Bronchiectasis in an asymptomatic infant with cystic fibrosis diagnosed following newborn screening. J Cyst Fibros 2009; 8 (04) 285-287
  • 73 Sly PD, Brennan S, Gangell C. , et al; Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF). Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 2009; 180 (02) 146-152
  • 74 Armstrong DS, Hook SM, Jamsen KM. , et al. Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Pediatr Pulmonol 2005; 40 (06) 500-510
  • 75 Margaroli C, Garratt LW, Horati H. , et al. Elastase exocytosis by airway neutrophils is associated with early lung damage in children with cystic fibrosis. Am J Respir Crit Care Med 2019; 199 (07) 873-881
  • 76 Rosenow T, Mok LC, Turkovic L. , et al. The cumulative effect of inflammation and infection on structural lung disease in early CF. Eur Respir J 2019 (e-pub ahead of print). doi:10.1183/13993003.01771-2018
  • 77 Lee WL, Downey GP. Leukocyte elastase: physiological functions and role in acute lung injury. Am J Respir Crit Care Med 2001; 164 (05) 896-904
  • 78 Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 2000; 289 (5482): 1185-1188
  • 79 Belaaouaj A, McCarthy R, Baumann M. , et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med 1998; 4 (05) 615-618
  • 80 Benabid R, Wartelle J, Malleret L. , et al. Neutrophil elastase modulates cytokine expression: contribution to host defense against Pseudomonas aeruginosa-induced pneumonia. J Biol Chem 2012; 287 (42) 34883-34894
  • 81 Cantin AM, Lafrenaye S, Bégin RO. Antineutrophil elastase activity in cystic fibrosis serum. Pediatr Pulmonol 1991; 11 (03) 249-253
  • 82 Suter S, Schaad UB, Roux L, Nydegger UE, Waldvogel FA. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis 1984; 149 (04) 523-531
  • 83 Cantin A, Bilodeau G, Bégin R. Granulocyte elastase-mediated proteolysis of alpha 1-antitrypsin in cystic fibrosis bronchopulmonary secretions. Pediatr Pulmonol 1989; 7 (01) 12-17
  • 84 Cantin AM, Bilodeau G, Larivée P, Richter MV. Plasma biomarkers and cystic fibrosis lung disease. Clin Invest Med 2012; 35 (04) E173-E181
  • 85 Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol 1999; 276 (05) L835-L843
  • 86 Griffin S, Carroll TP, Greene CM, O'Neill SJ, Taggart CC, McElvaney NG. Effect of pro-inflammatory stimuli on mucin expression and inhibition by secretory leucoprotease inhibitor. Cell Microbiol 2007; 9 (03) 670-679
  • 87 Shao MX, Nadel JA. Neutrophil elastase induces MUC5AC mucin production in human airway epithelial cells via a cascade involving protein kinase C, reactive oxygen species, and TNF-alpha-converting enzyme. J Immunol 2005; 175 (06) 4009-4016
  • 88 Shao MX, Nadel JA. Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci U S A 2005; 102 (03) 767-772
  • 89 Fick Jr RB, Naegel GP, Squier SU, Wood RE, Gee JB, Reynolds HY. Proteins of the cystic fibrosis respiratory tract. Fragmented immunoglobulin G opsonic antibody causing defective opsonophagocytosis. J Clin Invest 1984; 74 (01) 236-248
  • 90 Berger M, Sorensen RU, Tosi MF, Dearborn DG, Döring G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest 1989; 84 (04) 1302-1313
  • 91 Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest 1990; 86 (01) 300-308
  • 92 Vandivier RW, Fadok VA, Hoffmann PR. , et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 2002; 109 (05) 661-670
  • 93 Kelly E, Greene CM, McElvaney NG. Targeting neutrophil elastase in cystic fibrosis. Expert Opin Ther Targets 2008; 12 (02) 145-157
  • 94 Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The role of neutrophil elastase inhibitors in lung diseases. Chest 2017; 152 (02) 249-262
  • 95 Babior BM. Phagocytes and oxidative stress. Am J Med 2000; 109 (01) 33-44
  • 96 Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2015; 12 (01) 5-23
  • 97 Houston N, Stewart N, Smith DS, Bell SC, Champion AC, Reid DW. Sputum neutrophils in cystic fibrosis patients display a reduced respiratory burst. J Cyst Fibros 2013; 12 (04) 352-362
  • 98 Painter RG, Bonvillain RW, Valentine VG. , et al. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 2008; 83 (06) 1345-1353
  • 99 Painter RG, Marrero L, Lombard GA, Valentine VG, Nauseef WM, Wang G. CFTR-mediated halide transport in phagosomes of human neutrophils. J Leukoc Biol 2010; 87 (05) 933-942
  • 100 Sousa SA, Ulrich M, Bragonzi A. , et al. Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice. Cell Microbiol 2007; 9 (12) 2817-2825
  • 101 Speert DP, Bond M, Woodman RC, Curnutte JT. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J Infect Dis 1994; 170 (06) 1524-1531
  • 102 Keith KE, Hynes DW, Sholdice JE, Valvano MA. Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. Microbiology 2009; 155 (Pt 4): 1004-1015
  • 103 Pohl K, Hayes E, Keenan J. , et al. A neutrophil intrinsic impairment affecting Rab27a and degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. Blood 2014; 124 (07) 999-1009
  • 104 Lamothe J, Valvano MA. Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology 2008; 154 (Pt 12): 3825-3834
  • 105 Reeves EP, Lu H, Jacobs HL. , et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002; 416 (6878): 291-297
  • 106 Chan C, Burrows LL, Deber CM. Alginate as an auxiliary bacterial membrane: binding of membrane-active peptides by polysaccharides. J Pept Res 2005; 65 (03) 343-351
  • 107 Spicuzza L, Parisi GF, Tardino L. , et al. Exhaled markers of antioxidant activity and oxidative stress in stable cystic fibrosis patients with moderate lung disease. J Breath Res 2018; 12 (02) 026010
  • 108 Cantin AM, White TB, Cross CE, Forman HJ, Sokol RJ, Borowitz D. Antioxidants in cystic fibrosis. Conclusions from the CF antioxidant workshop, Bethesda, Maryland, November 11-12, 2003. Free Radic Biol Med 2007; 42 (01) 15-31
  • 109 Xu Y, Szép S, Lu Z. The antioxidant role of thiocyanate in the pathogenesis of cystic fibrosis and other inflammation-related diseases. Proc Natl Acad Sci U S A 2009; 106 (48) 20515-20519
  • 110 Kettle AJ, Turner R, Gangell CL. , et al; AREST CF. Oxidation contributes to low glutathione in the airways of children with cystic fibrosis. Eur Respir J 2014; 44 (01) 122-129
  • 111 Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med 2010; 363 (23) 2233-2247
  • 112 Livraghi-Butrico A, Grubb BR, Wilkinson KJ. , et al. Contribution of mucus concentration and secreted mucins Muc5ac and Muc5b to the pathogenesis of muco-obstructive lung disease. Mucosal Immunol 2017; 10 (02) 395-407
  • 113 Roy MG, Livraghi-Butrico A, Fletcher AA. , et al. Muc5b is required for airway defence. Nature 2014; 505 (7483): 412-416
  • 114 Hoegger MJ, Fischer AJ, McMenimen JD. , et al. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 2014; 345 (6198): 818-822
  • 115 Henderson AG, Ehre C, Button B. , et al. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 2014; 124 (07) 3047-3060
  • 116 Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 1992; 257 (5073): 1125-1128
  • 117 Semaniakou A, Croll RP, Chappe V. Animal models in the pathophysiology of cystic fibrosis. Front Pharmacol 2019; 9: 1475 . doi: 10.3389/fphar.2018.01475
  • 118 Progatzky F, Cook HT, Lamb JR, Bugeon L, Dallman MJ. Mucosal inflammation at the respiratory interface: a zebrafish model. Am J Physiol Lung Cell Mol Physiol 2016; 310 (06) L551-L561
  • 119 Bernut A, Dupont C, Ogryzko NV. , et al. CFTR protects against Mycobacterium abscessus infection by fine-tuning host oxidative defenses. Cell Reports 2019; 26 (07) 1828.e4-1840.e4
  • 120 Leslie M. Zebrafish larvae could help to personalize cancer treatments. Science 2017; 357 (6353): 745
  • 121 Keating D, Marigowda G, Burr L. , et al; VX16-445-001 Study Group. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018; 379 (17) 1612-1620
  • 122 Davies JC, Moskowitz SM, Brown C. , et al; VX16-659-101 Study Group. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med 2018; 379 (17) 1599-1611
  • 123 Rafeeq MM, Murad HAS. Cystic fibrosis: current therapeutic targets and future approaches. J Transl Med 2017; 15 (01) 84 . doi: 10.1186/s12967-017-1193-9
  • 124 Scott DW, Walker MP, Sesma J. , et al. SPX-101 is a novel epithelial sodium channel-targeted therapeutic for cystic fibrosis that restores mucus transport. Am J Respir Crit Care Med 2017; 196 (06) 734-744
  • 125 Ehre C, Rushton ZL, Wang B. , et al. An improved inhaled mucolytic to treat airway muco-obstructive diseases. Am J Respir Crit Care Med 2019; 199 (02) 171-180