Subscribe to RSS
DOI: 10.1055/s-0039-1693648
Physiologic Basis of Symptoms in Pleural Disease
Publication History
Publication Date:
16 September 2019 (online)
Abstract
Pleural effusions are commonly encountered and have a significant impact on the respiratory system. The reported effect of thoracentesis on physiologic parameters including oxygenation, lung volumes, and respiratory mechanics is variable likely owing to studies with a small, heterogeneous population of patients.
Most patients who are short of breath from pleural effusion experience relief following drainage due to improvement in the length–tension relationship of the respiratory muscles. An observed increase in oxygenation following thoracentesis is likely due to improved ventilation and perfusion matching. Recent advances in methods of measuring pleural pressure provide a greater understanding of the impact of pleural effusion on pleural pressure and changes in pleural pressure with thoracentesis; however, there has been no demonstrated benefit of routine monitoring of pleural pressure to reduce complications from thoracentesis. Manometry does allow for the identification of patients with unexpandable lung which is useful when determining options for pleural palliation. The following article will review the pathophysiological effects of pleural effusion and thoracentesis.
-
References
- 1 Light RW. Pleural Diseases. Philadelphia, PA: Lippincott Williams & Wilkins; 2007
- 2 Light RW. Pleural effusions. Med Clin North Am 2011; 95 (06) 1055-1070
- 3 Feller-Kopman D, Light R. Pleural disease. N Engl J Med 2018; 378 (08) 740-751
- 4 Agustí AG, Cardús J, Roca J, Grau JM, Xaubet A, Rodriguez-Roisin R. Ventilation-perfusion mismatch in patients with pleural effusion: effects of thoracentesis. Am J Respir Crit Care Med 1997; 156 (4 Pt 1): 1205-1209
- 5 Nishida O, Arellano R, Cheng DC, DeMajo W, Kavanagh BP. Gas exchange and hemodynamics in experimental pleural effusion. Crit Care Med 1999; 27 (03) 583-587
- 6 Goligher EC, Leis JA, Fowler RA, Pinto R, Adhikari NK, Ferguson ND. Utility and safety of draining pleural effusions in mechanically ventilated patients: a systematic review and meta-analysis. Crit Care 2011; 15 (01) R46
- 7 Razazi K, Thille AW, Carteaux G. , et al. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients. Ann Am Thorac Soc 2014; 11 (07) 1018-1024
- 8 Perpiñá M, Benlloch E, Marco V, Abad F, Nauffal D. Effect of thoracentesis on pulmonary gas exchange. Thorax 1983; 38 (10) 747-750
- 9 Roch A, Bojan M, Michelet P. , et al. Usefulness of ultrasonography in predicting pleural effusions > 500 mL in patients receiving mechanical ventilation. Chest 2005; 127 (01) 224-232
- 10 Brown NE, Zamel N, Aberman A. Changes in pulmonary mechanics and gas exchange following thoracocentesis. Chest 1978; 74 (05) 540-542
- 11 Doelken P, Abreu R, Sahn SA, Mayo PH. Effect of thoracentesis on respiratory mechanics and gas exchange in the patient receiving mechanical ventilation. Chest 2006; 130 (05) 1354-1361
- 12 DeBiasi EM, Puchalski J. Thoracentesis: state-of-the-art in procedural safety, patient outcomes, and physiologic impact. Pleura (Thousand Oaks) 2016; 3: 1-10
- 13 Chen WL, Chung CL, Hsiao SH, Chang SC. Pleural space elastance and changes in oxygenation after therapeutic thoracentesis in ventilated patients with heart failure and transudative pleural effusions. Respirology 2010; 15 (06) 1001-1008
- 14 Umbrello M, Mistraletti G, Galimberti A, Piva IR, Cozzi O, Formenti P. Drainage of pleural effusion improves diaphragmatic function in mechanically ventilated patients. Crit Care Resusc 2017; 19 (01) 64-70
- 15 Vetrugno L, Bignami E, Orso D. , et al. Utility of pleural effusion drainage in the ICU: an updated systematic review and META-analysis. J Crit Care 2019; 52: 22-32
- 16 Spyratos D, Sichletidis L, Manika K, Kontakiotis T, Chloros D, Patakas D. Expiratory flow limitation in patients with pleural effusion. Respiration 2007; 74 (05) 572-578
- 17 Wang LM, Cherng JM, Wang JS. Improved lung function after thoracocentesis in patients with paradoxical movement of a hemidiaphragm secondary to a large pleural effusion. Respirology 2007; 12 (05) 719-723
- 18 Cartaxo AM, Vargas FS, Salge JM. , et al. Improvements in the 6-min walk test and spirometry following thoracentesis for symptomatic pleural effusions. Chest 2011; 139 (06) 1424-1429
- 19 Boshuizen RC, Vincent AD, van den Heuvel MM. Comparison of modified Borg scale and visual analog scale dyspnea scores in predicting re-intervention after drainage of malignant pleural effusion. Support Care Cancer 2013; 21 (11) 3109-3116
- 20 Marcondes BF, Vargas F, Paschoal FH. , et al. Sleep in patients with large pleural effusion: impact of thoracentesis. Sleep Breath 2012; 16 (02) 483-489
- 21 Karetzky MS, Kothari GA, Fourre JA, Khan AU. Effect of thoracentesis on arterial oxygen tension. Respiration 1978; 36 (02) 96-103
- 22 Michaelides SA, Bablekos GD, Analitis A, Michailidis AR, Charalabopoulos KA, Koulouris N. Initial size of unilateral pleural effusion determines impact of thoracocentesis on oxygenation. Postgrad Med J 2017; 93 (1105): 691-695
- 23 Stecka AM, Gólczewski T, Grabczak EM. , et al. The use of a virtual patient to follow changes in arterial blood gases associated with therapeutic thoracentesis. Int J Artif Organs 2018; 41 (11) 690-697
- 24 Krell WS, Rodarte JR. Effects of acute pleural effusion on respiratory system mechanics in dogs. Journal of Applied Physiology 1985; 59 (05) 1458-1463
- 25 Sousa AS, Moll RJ, Pontes CF, Saldiva PH, Zin WA. Mechanical and morphometrical changes in progressive bilateral pneumothorax and pleural effusion in normal rats. Eur Respir J 1995; 8 (01) 99-104
- 26 Light RW, Stansbury DW, Brown SE. The relationship between pleural pressures and changes in pulmonary function after therapeutic thoracentesis. Am Rev Respir Dis 1986; 133 (04) 658-661
- 27 Estenne M, Yernault JC, De Troyer A. Mechanism of relief of dyspnea after thoracocentesis in patients with large pleural effusions. Am J Med 1983; 74 (05) 813-819
- 28 Michaelides SA, Bablekos GD, Analitis A, Ionas G, Bakakos P, Charalabopoulos KA. Temporal evolution of thoracocentesis-induced changes in spirometry and respiratory muscle pressures. Postgrad Med J 2017; 93 (1102): 460-464
- 29 Klecka ME, Maldonado F. Symptom relief after large-volume thoracentesis in the absence of lung perfusion. Chest 2014; 145 (05) 1141-1143
- 30 Wang JS, Tseng CH. Changes in pulmonary mechanics and gas exchange after thoracentesis on patients with inversion of a hemidiaphragm secondary to large pleural effusion. Chest 1995; 107 (06) 1610-1614
- 31 Garske LA, Kunarajah K, Zimmerman PV, Adams L, Stewart IB. In patients with unilateral pleural effusion, restricted lung inflation is the principal predictor of increased dyspnoea. PLoS One 2018; 13 (10) e0202621
- 32 Feller-Kopman D, Parker MJ, Schwartzstein RM. Assessment of pleural pressure in the evaluation of pleural effusions. Chest 2009; 135 (01) 201-209
- 33 Light RW, Jenkinson SG, Minh VD, George RB. Observations on pleural fluid pressures as fluid is withdrawn during thoracentesis. Am Rev Respir Dis 1980; 121 (05) 799-804
- 34 Doelken P, Huggins JT, Pastis NJ, Sahn SA. Pleural manometry: technique and clinical implications. Chest 2004; 126 (06) 1764-1769
- 35 Feller-Kopman D, Berkowitz D, Boiselle P, Ernst A. Large-volume thoracentesis and the risk of reexpansion pulmonary edema. Ann Thorac Surg 2007; 84 (05) 1656-1661
- 36 Feller-Kopman D, Walkey A, Berkowitz D, Ernst A. The relationship of pleural pressure to symptom development during therapeutic thoracentesis. Chest 2006; 129 (06) 1556-1560
- 37 Krenke R, Guć M, Grabczak EM. , et al. Development of an electronic manometer for intrapleural pressure monitoring. Respiration 2011; 82 (04) 377-385
- 38 Salamonsen M, Ware R, Fielding D. A new method for performing continuous manometry during pleural effusion drainage. Respiration 2014; 88 (01) 61-66
- 39 Lee HJ, Yarmus L, Kidd D. , et al. Comparison of pleural pressure measuring instruments. Chest 2014; 146 (04) 1007-1012
- 40 Villena V, López-Encuentra A, Pozo F, De-Pablo A, Martín-Escribano P. Measurement of pleural pressure during therapeutic thoracentesis. Am J Respir Crit Care Med 2000; 162 (4 Pt 1): 1534-1538
- 41 Huggins JT, Sahn SA, Heidecker J, Ravenel JG, Doelken P. Characteristics of trapped lung: pleural fluid analysis, manometry, and air-contrast chest CT. Chest 2007; 131 (01) 206-213
- 42 Pannu J, DePew ZS, Mullon JJ, Daniels CE, Hagen CE, Maldonado F. Impact of pleural manometry on the development of chest discomfort during thoracentesis: a symptom-based study. J Bronchology Interv Pulmonol 2014; 21 (04) 306-313
- 43 Ault MJ, Rosen BT, Scher J, Feinglass J, Barsuk JH. Thoracentesis outcomes: a 12-year experience. Thorax 2015; 70 (02) 127-132
- 44 Mahfood S, Hix WR, Aaron BL, Blaes P, Watson DC. Reexpansion pulmonary edema. Ann Thorac Surg 1988; 45 (03) 340-345
- 45 Pavlin J, Cheney Jr FW. Unilateral pulmonary edema in rabbits after reexpansion of collapsed lung. J Appl Physiol 1979; 46 (01) 31-35
- 46 Heidecker J, Huggins JT, Sahn SA, Doelken P. Pathophysiology of pneumothorax following ultrasound-guided thoracentesis. Chest 2006; 130 (04) 1173-1184
- 47 Lentz RJ, Lerner AD, Pannu JK. , et al. Routine monitoring with pleural manometry during therapeutic large-volume thoracentesis to prevent pleural-pressure-related complications: a multicentre, single-blind randomised controlled trial. Lancet Respir Med 2019; 7 (05) 447-455
- 48 Zielinska-Krawczyk M, Michnikowski M, Grabczak EM. , et al. Cough during therapeutic thoracentesis: friend or foe?. Respirology 2015; 20 (01) 166-168
- 49 Zielinska-Krawczyk M, Grabczak EM, Michnikowski M. , et al. Patterns of pleural pressure amplitude and respiratory rate changes during therapeutic thoracentesis. BMC Pulm Med 2018; 18 (01) 36
- 50 Feller-Kopman DJ, Reddy CB, DeCamp MM. , et al. Management of malignant pleural effusions. An official ATS/STS/STR clinical practice guideline. Am J Respir Crit Care Med 2018; 198 (07) 839-849
- 51 Lan RS, Lo SK, Chuang ML, Yang CT, Tsao TC, Lee CH. Elastance of the pleural space: a predictor for the outcome of pleurodesis in patients with malignant pleural effusion. Ann Intern Med 1997; 126 (10) 768-774
- 52 Burki NK, Lee LY. Mechanisms of dyspnea. Chest 2010; 138 (05) 1196-1201
- 53 Davies HE, Mishra EK, Kahan BC. , et al. Effect of an indwelling pleural catheter vs chest tube and talc pleurodesis for relieving dyspnea in patients with malignant pleural effusion: the TIME2 randomized controlled trial. JAMA 2012; 307 (22) 2383-2389
- 54 Lorenzo MJ, Modesto M, Pérez J. , et al. Quality-of-life assessment in malignant pleural effusion treated with indwelling pleural catheter: a prospective study. Palliat Med 2014; 28 (04) 326-334
- 55 Argento AC, Murphy TE, Pisani MA, Araujo KLB, Puchalski J. Patient-centered outcomes following thoracentesis. Pleura (Thousand Oaks) 2015; 2: 2
- 56 Gundersen GH, Norekvål TM, Graven T. , et al. Patient-reported outcomes and associations with pleural effusion in outpatients with heart failure: an observational cohort study. BMJ Open 2017; 7 (03) e013734
- 57 Jeffery E, Lee YG, McVeigh J. , et al. Feasibility of objectively measured physical activity and sedentary behavior in patients with malignant pleural effusion. Support Care Cancer 2017; 25 (10) 3133-3141
- 58 Hardie JA, Mørkve O, Ellingsen I. Effect of body position on arterial oxygen tension in the elderly. Respiration 2002; 69 (02) 123-128
- 59 Ceylan B, Khorshid L, Güneş UY, Zaybak A. Evaluation of oxygen saturation values in different body positions in healthy individuals. J Clin Nurs 2016; 25 (7-8): 1095-1100
- 60 Michaelides SA, Michailidis AR, Bablekos GD, Analitis A, Michalatou M, Koulouris N. Does size matter concerning impact of position on oxygenation status in spontaneously breathing patients with unilateral effusion?. Postgrad Med J 2018; 94 (1108): 81-86