Semin intervent Radiol 2019; 36(03): 255-263
DOI: 10.1055/s-0039-1693121
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Lung and Abdominal Biopsies in the Age of Precision Medicine

Leonard Dalag
1   Department of Radiology, University of Chicago, Chicago, Illinois
,
Jonathan K. Fergus
1   Department of Radiology, University of Chicago, Chicago, Illinois
,
Steven M. Zangan
1   Department of Radiology, University of Chicago, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
19 August 2019 (online)

Abstract

Image-guided percutaneous needle biopsies (PNBs) are one of the most common procedures performed in radiology departments today. Rapid developments in precision medicine, which identifies molecular and genomic biomarkers in cancers, have ushered a new paradigm of oncologic workup and treatment. PNB has conventionally been used to establish a benign or malignant nature of a lesion during initial diagnosis or in suspected metastatic or recurrent disease. However, increasing amounts of tissue are being required to meet the demands of molecular pathologic analysis, which are now being sought at multiple time points during the course of the disease to guide targeted therapy. As primary providers of biopsy, radiologists must be proactive in these developments to improve diagnostic yield and tissue acquisition in PNB. Herein, we discuss the important and expanding role of PNB in the age of precision medicine and review the technical considerations of percutaneous lung and intra-abdominal biopsy. Finally, we examine promising state-of-the-art techniques in PNB that may safely increase tissue acquisition for optimal molecular pathologic analysis.

 
  • References

  • 1 Kwan SW, Bhargavan M, Kerlan Jr RK, Sunshine JH. Effect of advanced imaging technology on how biopsies are done and who does them. Radiology 2010; 256 (03) 751-758
  • 2 Rodig SJ, Mino-Kenudson M, Dacic S. , et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 2009; 15 (16) 5216-5223
  • 3 Martinez P, Hernández-Losa J, Montero MÁ. , et al. Fluorescence in situ hybridization and immunohistochemistry as diagnostic methods for ALK positive non-small cell lung cancer patients. PLoS One 2013; 8 (01) e52261
  • 4 Marshall D, Laberge JM, Firetag B, Miller T, Kerlan RK. The changing face of percutaneous image-guided biopsy: molecular profiling and genomic analysis in current practice. J Vasc Interv Radiol 2013; 24 (08) 1094-1103
  • 5 Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372 (09) 793-795
  • 6 Kim ES, Herbst RS, Wistuba II. , et al. The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 2011; 1 (01) 44-53
  • 7 Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol 2011; 8 (03) 135-141
  • 8 Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J. 2009 Biospecimen Research Network Symposium: advancing cancer research through biospecimen science. Cancer Res 2009; 69 (17) 6770-6772
  • 9 Khleif SN, Doroshow JH, Hait WN. ; AACR-FDA-NCI Cancer Biomarkers Collaborative. AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res 2010; 16 (13) 3299-3318
  • 10 Cronin KA, Lake AJ, Scott S. , et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer 2018; 124 (13) 2785-2800
  • 11 Negoita S, Feuer EJ, Mariotto A. , et al. Annual report to the nation on the status of cancer, part II: recent changes in prostate cancer trends and disease characteristics. Cancer 2018; 124 (13) 2801-2814
  • 12 O'Leary M, Krailo M, Anderson JR, Reaman GH. ; Children's Oncology Group. Progress in childhood cancer: 50 years of research collaboration, a report from the Children's Oncology Group. Semin Oncol 2008; 35 (05) 484-493
  • 13 Kwan SW, Talenfeld AD, Brunner MC. The top three health care developments impacting the practice of interventional radiology in the next decade. AJR Am J Roentgenol 2016; 207 (04) 731-736
  • 14 Tam AL, Lim HJ, Wistuba II. , et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the Society of Interventional Radiology Research Consensus Panel. J Vasc Interv Radiol 2016; 27 (01) 8-19
  • 15 Lindström LS, Karlsson E, Wilking UM. , et al. Clinically used breast cancer markers such as estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 are unstable throughout tumor progression. J Clin Oncol 2012; 30 (21) 2601-2608
  • 16 Gerlinger M, Rowan AJ, Horswell S. , et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366 (10) 883-892
  • 17 Von Hoff DD, Stephenson Jr JJ, Rosen P. , et al. Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 2010; 28 (33) 4877-4883
  • 18 Ferté C, André F, Soria JC. Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 2010; 7 (07) 367-380
  • 19 Sanli O, Dobruch J, Knowles MA. , et al. Bladder cancer. Nat Rev Dis Primers 2017; 3: 17022
  • 20 Jamaspishvili T, Berman DM, Ross AE. , et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15 (04) 222-234
  • 21 Kammerer-Jacquet SF, Ahmad A, Møller H. , et al. Ki-67 is an independent predictor of prostate cancer death in routine needle biopsy samples: proving utility for routine assessments. Mod Pathol 2019 Doi: 10.1038/s41379-019-0268-y. [Epub ahead of print]
  • 22 Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet 2016; 387 (10023(: 1094-1108
  • 23 Duffy MJ, Harbeck N, Nap M. , et al. Clinical use of biomarkers in breast cancer: updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer 2017; 75: 284-298
  • 24 Kris MG, Johnson BE, Berry LD. , et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311 (19) 1998-2006
  • 25 Taslakian B, Georges Sebaaly M, Al-Kutoubi A. Patient evaluation and preparation in vascular and interventional radiology: what every interventional radiologist should know (part 1: patient assessment and laboratory tests). Cardiovasc Intervent Radiol 2016; 39 (03) 325-333
  • 26 Jaffe TA, Raiff D, Ho LM, Kim CY. Management of anticoagulant and antiplatelet medications in adults undergoing percutaneous interventions. AJR Am J Roentgenol 2015; 205 (02) 421-428
  • 27 Patel IJ, Davidson JC, Nikolic B. , et al; Standards of Practice Committee, with Cardiovascular and Interventional Radiological Society of Europe (CIRSE) Endorsement. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 2012; 23 (06) 727-736
  • 28 Fields LM, Calvert JD. Informed consent procedures with cognitively impaired patients: a review of ethics and best practices. Psychiatry Clin Neurosci 2015; 69 (08) 462-471
  • 29 Lee MJ, Fanelli F, Haage P, Hausegger K, Van Lienden KP. Patient safety in interventional radiology: a CIRSE IR checklist. Cardiovasc Intervent Radiol 2012; 35 (02) 244-246
  • 30 Veltri A, Bargellini I, Giorgi L, Almeida PAMS, Akhan O. CIRSE guidelines on percutaneous needle biopsy (PNB). Cardiovasc Intervent Radiol 2017; 40 (10) 1501-1513
  • 31 Chehab MA, Thakor AS, Tulin-Silver S. , et al. Adult and pediatric antibiotic prophylaxis during vascular and IR procedures: a Society of Interventional Radiology Practice Parameter Update Endorsed by the Cardiovascular and Interventional Radiological Society of Europe and the Canadian Association for Interventional Radiology. J Vasc Interv Radiol 2018; 29 (11) 1483-1501.e2
  • 32 Shankar S, van Sonnenberg E, Silverman SG, Tuncali K. Interventional radiology procedures in the liver. Biopsy, drainage, and ablation. Clin Liver Dis 2002; 6 (01) 91-118
  • 33 Robertson EG, Baxter G. Tumour seeding following percutaneous needle biopsy: the real story!. Clin Radiol 2011; 66 (11) 1007-1014
  • 34 Hatfield MK, Beres RA, Sane SS, Zaleski GX. Percutaneous imaging-guided solid organ core needle biopsy: coaxial versus noncoaxial method. AJR Am J Roentgenol 2008; 190 (02) 413-417
  • 35 Young G, Wang K, He J. , et al. Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 2013; 121 (12) 688-694
  • 36 Hoang NS, Ge BH, Pan LY. , et al. Determining the optimal number of core needle biopsy passes for molecular diagnostics. Cardiovasc Intervent Radiol 2018; 41 (03) 489-495
  • 37 Tran AA, Brown SB, Rosenberg J, Hovsepian DM. Tract embolization with gelatin sponge slurry for prevention of pneumothorax after percutaneous computed tomography-guided lung biopsy. Cardiovasc Intervent Radiol 2014; 37 (06) 1546-1553
  • 38 Zaetta JM, Licht MO, Fisher JS, Avelar RL. ; Bio-Seal Study Group. A lung biopsy tract plug for reduction of postbiopsy pneumothorax and other complications: results of a prospective, multicenter, randomized, controlled clinical study. J Vasc Interv Radiol 2010; 21 (08) 1235-43.e1 , 3
  • 39 Kalhor N, Wistuba II. Perfecting the fine-needle aspirate cell block. Cancer Cytopathol 2013; 121 (03) 109-110
  • 40 Gupta S, Wallace MJ, Cardella JF, Kundu S, Miller DL, Rose SC. ; Society of Interventional Radiology Standards of Practice Committee. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol 2010; 21 (07) 969-975
  • 41 Cowan NJ, Goldberg K, Chirikjian GS. , et al. Robotic needle steering: design, modeling, planning, and image guidance. In: Surgical Robotics. Boston, MA: Springer US; 2011: 557-582
  • 42 DiMaio SP, Salcudean SE. Needle steering and motion planning in soft tissues. IEEE Trans Biomed Eng 2005; 52 (06) 965-974
  • 43 Webster RJ, Kim JS, Cowan NJ, Chirikjian GS, Okamura AM. Nonholonomic modeling of needle steering. Int J Robot Res 2006; 25 (5–6(: 509-525
  • 44 Wartenberg M, Schornak J, Gandomi K. , et al. Closed-loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion. Ann Biomed Eng 2018; 46 (10) 1582-1594
  • 45 Glozman D, Shoham M. Image-guided robotic flexible needle steering. IEEE Trans Robot 2007; 23 (03) 459-467
  • 46 Swaney PJ, Burgner J, Gilbert HB, Webster III RJ. A flexure-based steerable needle: high curvature with reduced tissue damage. IEEE Trans Biomed Eng 2013; 60 (04) 906-909
  • 47 Maybody M, Stevenson C, Solomon SB. Overview of navigation systems in image-guided interventions. Tech Vasc Interv Radiol 2013; 16 (03) 136-143
  • 48 Dynamic reference method and system for interventional procedures. November 2012 . Available at: https://patents.google.com/patent/US20130079628A1/en . Accessed April 7, 2019
  • 49 Stattaus J, Kuehl H, Ladd S. , et al. CT-guided biopsy of small liver lesions: visibility, artifacts, and corresponding diagnostic accuracy. Cardiovasc Intervent Radiol 2007; 30 (05) 928-935 . Doi: 10.1007/s00270-007-9023-8
  • 50 Cornelis F, Silk M, Schoder H. , et al. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging 2014; 41 (12) 2265-2272
  • 51 Sheth RA, Arellano RS, Uppot RN. , et al. Prospective trial with optical molecular imaging for percutaneous interventions in focal hepatic lesions. Radiology 2015; 274 (03) 917-926
  • 52 Lewin JS, Petersilge CA, Hatem SF. , et al. Interactive MR imaging-guided biopsy and aspiration with a modified clinical C-arm system. AJR Am J Roentgenol 1998; 170 (06) 1593-1601
  • 53 Lewin JS, Nour SG, Duerk JL. Magnetic resonance image-guided biopsy and aspiration. Top Magn Reson Imaging 2000; 11 (03) 173-183
  • 54 Weiss CR, Nour SG, Lewin JS. MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging 2008; 27 (02) 311-325
  • 55 Sutherland GR, Latour I, Greer AD. Integrating an image-guided robot with intraoperative MRI: a review of the design and construction of neuroArm. IEEE Eng Med Biol Mag 2008; 27 (03) 59-65
  • 56 Li G, Su H, Cole GA. , et al. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans Biomed Eng 2015; 62 (04) 1077-1088
  • 57 Masamune K, Kobayashi E, Masutani Y. , et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1995; 1 (04) 242-248
  • 58 Krieger A, Iordachita II, Guion P. , et al. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng 2011; 58 (11) 3049-3060
  • 59 Stoianovici D, Song D, Petrisor D. , et al. “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol 2007; 16 (04) 241-248
  • 60 Moche M, Heinig S, Garnov N. , et al. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients. Eur Radiol 2016; 26 (08) 2462-2470
  • 61 Arnolli MM, Hanumara NC, Franken M, Brouwer DM, Broeders IA. An overview of systems for CT- and MRI-guided percutaneous needle placement in the thorax and abdomen. Int J Med Robot 2015; 11 (04) 458-475
  • 62 Melzer A, Gutmann B, Remmele T. , et al. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag 2008; 27 (03) 66-73
  • 63 Abdullah BJ, Yeong CH, Goh KL. , et al. Robotic-assisted thermal ablation of liver tumours. Eur Radiol 2015; 25 (01) 246-257
  • 64 Beyer LP, Pregler B, Niessen C. , et al. Robot-assisted microwave thermoablation of liver tumors: a single-center experience. Int J CARS 2016; 11 (02) 253-259
  • 65 Pfeil A, Barbe L, Wach B, Cazzato RL, Gangi A, Renaud P. Observations and experiments for the definition of a new robotic device dedicated to CT, CBCT and MRI-guided percutaneous procedures. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2018: 1708-1712 . Doi: 10.1109/EMBC.2018.8512682
  • 66 Merker JD, Oxnard GR, Compton C. , et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol 2018; 36 (16) 1631-1641
  • 67 Diehl F, Li M, Dressman D. , et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 2005; 102 (45) 16368-16373
  • 68 Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods 2006; 3 (02) 95-97
  • 69 Schwaederle M, Husain H, Fanta PT. , et al. Use of liquid biopsies in clinical oncology: pilot experience in 168 patients. Clin Cancer Res 2016; 22 (22) 5497-5505
  • 70 Weber B, Meldgaard P, Hager H. , et al. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays. BMC Cancer 2014; 14 (01) 294
  • 71 Sorensen BS, Wu L, Wei W. , et al. Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer 2014; 120 (24) 3896-3901
  • 72 Mok T, Wu YL, Lee JS. , et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res 2015; 21 (14) 3196-3203
  • 73 Karlovich C, Goldman JW, Sun JM. , et al. Assessment of EGFR mutation status in matched plasma and tumor tissue of NSCLC patients from a Phase I study of rociletinib (CO-1686). Clin Cancer Res 2016; 22 (10) 2386-2395
  • 74 Marchetti A, Palma JF, Felicioni L. , et al. Early prediction of response to tyrosine kinase inhibitors by quantification of EGFR mutations in plasma of NSCLC patients. J Thorac Oncol 2015; 10 (10) 1437-1443
  • 75 Chen ZY, Wang YX, Lin Y. , et al. Advance of molecular imaging technology and targeted imaging agent in imaging and therapy. BioMed Res Int 2014; 2014: 819324
  • 76 Tatli S, Gerbaudo VH, Mamede M, Tuncali K, Shyn PB, Silverman SG. Abdominal masses sampled at PET/CT-guided percutaneous biopsy: initial experience with registration of prior PET/CT images. Radiology 2010; 256 (01) 305-311
  • 77 Jung KH, Lee KH. Molecular imaging in the era of personalized medicine. J Pathol Transl Med 2015; 49 (01) 5-12
  • 78 Jung KH, Choe YS, Paik JY, Lee KH. 99mTc-Hydrazinonicotinamide epidermal growth factor-polyethylene glycol-quantum dot imaging allows quantification of breast cancer epidermal growth factor receptor expression and monitors receptor downregulation in response to cetuximab therapy. J Nucl Med 2011; 52 (09) 1457-1464
  • 79 Iagaru A, Gambhir SS. Imaging tumor angiogenesis: the road to clinical utility. AJR Am J Roentgenol 2013; 201 (02) W183-91
  • 80 Yang TJ, Haimovitz-Friedman A, Verheij M. Anticancer therapy and apoptosis imaging. Exp Oncol 2012; 34 (03) 269-276
  • 81 Kartachova M, Haas RL, Olmos RA, Hoebers FJ, van Zandwijk N, Verheij M. Invivo imaging of apoptosis by 99mTc-Annexin V scintigraphy: visual analysis inrelation to treatment response. Radiother Oncol 2004; 72 (03) 333-9.e
  • 82 Eisenhauer EA, Therasse P, Bogaerts J. , et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45 (02) 228-247
  • 83 Choi H, Charnsangavej C, Faria SC. , et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 2007; 25 (13) 1753-1759
  • 84 Pirker R, Herth FJF, Kerr KM. , et al; European EGFR Workshop Group. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol 2010; 5 (10) 1706-1713
  • 85 Dolgin E. Precision cancer treatment held back by low-quality biopsies. 2016–01–22. Available at: https://www.statnews.com/2016/01/22/precision-medicine-cancer-biopsies/ . Published 2016 . Accessed April 7, 2019