Semin Plast Surg 2019; 33(03): 190-199
DOI: 10.1055/s-0039-1693020
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bone Grafts, Bone Substitutes, and Orthobiologics: Applications in Plastic Surgery

Anjali Raghuram
1   Baylor College of Medicine, Houston, Texas
,
Aspinder Singh
2   Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
,
Daniel K. Chang
3   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
,
Mervin Nunez
3   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
,
Edward M. Reece
3   Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
02 August 2019 (online)

Abstract

As reconstructive needs often extend past the soft tissue alone, a plastic surgeon must also be well versed in the methods of bony reconstruction. Understanding of the basic science of fracture healing and the biochemical mechanisms of the different bone grafts, bone substitutes, and orthobiologics is essential to selecting among the many different options available to the modern plastic surgeon. This review provides a broad overview of these different options and the specific applications for plastic surgeons based on anatomic location.

 
  • References

  • 1 Doblare M, Garcia J, Gomez M. Modelling bone tissue fracture and healing: a review. Eng Fract Mech 2004; 71 (13–14): 1809-1840
  • 2 Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 2015; 11 (01) 45-54
  • 3 Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8 (04) 114-124
  • 4 Kwong FN, Harris MB. Recent developments in the biology of fracture repair. J Am Acad Orthop Surg 2008; 16 (11) 619-625
  • 5 Kloen P, Di Paola M, Borens O. , et al. BMP signaling components are expressed in human fracture callus. Bone 2003; 33 (03) 362-371
  • 6 Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; 10 (Suppl. 02) S96-S101
  • 7 Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2017; 2 (04) 224-247
  • 8 Khan SN, Cammisa Jr FP, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13 (01) 77-86
  • 9 Oakes DA, Cabanela ME. Impaction bone grafting for revision hip arthroplasty: biology and clinical applications. J Am Acad Orthop Surg 2006; 14 (11) 620-628
  • 10 Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 2007; 15 (09) 525-536
  • 11 Bae D, Waters P. Free vascularized fibula grafting: principles, techniques, and applications in pediatric orthopaedics. Available at: http://www.orthojournalhms.org/volume8/manuscripts/ms01.htm . Accessed July 2, 2019
  • 12 Bohl MA, Mooney MA, Catapano JS. , et al. Pedicled vascularized clavicular graft for anterior cervical arthrodesis: cadaveric feasibility study, technique description, and case report. Spine 2017; 42 (21) E1266-E1271
  • 13 Flynn J. Fracture repair and bone grafting. OKU 10: Orthopaedic Knowledge Update. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2011: 11-21
  • 14 Laurencin C. Musculoskeletal allograft tissue banking and safety. Bone Graft Substitutes. W Conshohocken, PA: ASTM International; 2003: 30-67
  • 15 Stevenson S, Horowitz M. The response to bone allografts. J Bone Joint Surg Am 1992; 74 (06) 939-950
  • 16 Bhatt RA, Rozental TD. Bone graft substitutes. Hand Clin 2012; 28 (04) 457-468
  • 17 Mendenhall S. Bone graft and bone substitutes. Orthopedic Network News; 2008
  • 18 Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 1999; 30 (04) 571-581
  • 19 Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury 2007; 38 (Suppl. 01) S33-S37
  • 20 Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 2010; 20: 1-12
  • 21 Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 1973; 7 (03) 25-42
  • 22 Neo M, Nakamura T, Ohtsuki C, Kasai R, Kokubo T, Yamamuro T. Ultrastructural study of the A-W GC-bone interface after long-term implantation in rat and human bone. J Biomed Mater Res 1994; 28 (03) 365-372
  • 23 Azenha MR, de Lacerda SA, Marão HF, Filho OP, Filho OM. Evaluation of crystallized biosilicate in the reconstruction of calvarial defects. J Maxillofac Oral Surg 2015; 14 (03) 659-665
  • 24 Harwood P, Newman J, Michael A. An update on fracture healing and non-union. Orthop Trauma 2010; 24 (01) 9-23
  • 25 Even J, Eskander M, Kang J. Bone morphogenetic protein in spine surgery: current and future uses. J Am Acad Orthop Surg 2012; 20 (09) 547-552
  • 26 Khan SN, Fraser JF, Sandhu HS, Cammisa Jr FP, Girardi FP, Lane JM. Use of osteopromotive growth factors, demineralized bone matrix, and ceramics to enhance spinal fusion. J Am Acad Orthop Surg 2005; 13 (02) 129-137
  • 27 Rihn JA, Gates C, Glassman SD, Phillips FM, Schwender JD, Albert TJ. The use of bone morphogenetic protein in lumbar spine surgery. J Bone Joint Surg Am 2008; 90 (09) 2014-2025
  • 28 Friedlaender GE, Perry CR, Cole JD. , et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-A (Pt 2, Suppl 1): S151-S158
  • 29 Cahill KS, Chi JH, Day A, Claus EB. Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 2009; 302 (01) 58-66
  • 30 Elsalanty ME, Genecov DG. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr 2009; 2 (03) 125-134
  • 31 Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000; (371) 10-27
  • 32 Doi K, Tominaga S, Shibata T. Bone grafts with microvascular anastomoses of vascular pedicles: an experimental study in dogs. J Bone Joint Surg Am 1977; 59 (06) 809-815
  • 33 Güven O. Rehabilitation of severely atrophied mandible using free iliac crest bone grafts and dental implants: report of two cases. J Oral Implantol 2007; 33 (03) 122-126
  • 34 Laine J, Vähätalo K, Peltola J, Tammisalo T, Happonen RP. Rehabilitation of patients with congenital unrepaired cleft palate defects using free iliac crest bone grafts and dental implants. Int J Oral Maxillofac Implants 2002; 17 (04) 573-580
  • 35 Pogrel MA, Podlesh S, Anthony JP, Alexander J. A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral Maxillofac Surg 1997; 55 (11) 1200-1206
  • 36 Foster RD, Anthony JP, Sharma A, Pogrel MA. Vascularized bone flaps versus nonvascularized bone grafts for mandibular reconstruction: an outcome analysis of primary bony union and endosseous implant success. Head Neck 1999; 21 (01) 66-71
  • 37 Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am 2002; 84-A (05) 716-720
  • 38 Boone DW. Complications of iliac crest graft and bone grafting alternatives in foot and ankle surgery. Foot Ankle Clin 2003; 8 (01) 1-14
  • 39 Nocini PF, Bedogni A, Valsecchi S. , et al. Fractures of the iliac crest following anterior and posterior bone graft harvesting. Review of the literature and case presentation. Minerva Stomatol 2003; 52 (10) 441-448 , 448–452
  • 40 Velchuru V, Satish S, Petri G, Sturzaker H. Hernia through an iliac crest bone graft site: report of a case and review of the literature. Bulletin (Hospital for Joint Diseases [New York, N]) 2006. ;63(3–4): 166-168
  • 41 Zijderveld SA, ten Bruggenkate CM, van Den Bergh JP, Schulten EA. Fractures of the iliac crest after split-thickness bone grafting for preprosthetic surgery: report of 3 cases and review of the literature. J Oral Maxillofac Surg 2004; 62 (07) 781-786
  • 42 Frodel J. Calvarial bone graft harvesting techniques: considerations for their use with rigid fixation techniques in the craniomaxillofacial region. In: Greenberg AM, Prein J. , eds. Craniomaxillofacial Reconstructive and Corrective Bone Surgery. New York, NY: Springer; 2002: 700-712
  • 43 Powell NB, Riley RW. Cranial bone grafting in facial aesthetic and reconstructive contouring. Arch Otolaryngol Head Neck Surg 1987; 113 (07) 713-719
  • 44 Ehrenfeld M, Hagenmaier C. Autogenous bone grafts in maxillofacial reconstruction. In: Greenberg AM, Prein J. , eds. Craniomaxillofacial Reconstructive and Corrective Bone Surgery. New York, NY: Springer; 2002: 295-309
  • 45 Güzel MZ, Arslan H, Saraç M. Mandibular condyle reconstruction with inlay application of autogenous costochondral graft after condylectomy: Cerrahpaşa's technique. J Oral Maxillofac Surg 2007; 65 (04) 615-620
  • 46 Medra AM. Follow up of mandibular costochondral grafts after release of ankylosis of the temporomandibular joints. Br J Oral Maxillofac Surg 2005; 43 (02) 118-122
  • 47 Troulis MJ, Tayebaty FT, Papadaki M, Williams WB, Kaban LB. Condylectomy and costochondral graft reconstruction for treatment of active idiopathic condylar resorption. J Oral Maxillofac Surg 2008; 66 (01) 65-72
  • 48 Peltomäki T, Isotupa K. The costochondral graft: a solution or a source of facial asymmetry in growing children. A case report. Proc Finn Dent Soc 1991; 87 (01) 167-176
  • 49 Siavosh S, Ali M. Overgrowth of a costochondral graft in a case of temporomandibular joint ankylosis. J Craniofac Surg 2007; 18 (06) 1488-1491
  • 50 Payatakes A, Sotereanos DG. Pedicled vascularized bone grafts for scaphoid and lunate reconstruction. J Am Acad Orthop Surg 2009; 17 (12) 744-755
  • 51 Siemssen SO, Kirkby B, O'Connor TP. Immediate reconstruction of a resected segment of the lower jaw, using a compound flap of clavicle and sternomastoid muscle. Plast Reconstr Surg 1978; 61 (05) 724-735
  • 52 Urken M, Biller H. Muscle and musculocutaneous flaps: sternocleidomastoid. Atlas of Regional and Free Flaps for Head and Neck Reconstruction. Philadelphia, PA: Lippincott Williams & Wilkins; 1995: 49-64
  • 53 Salyer KE, Gendler E, Squier CA. Long-term outcome of extensive skull reconstruction using demineralized perforated bone in Siamese twins joined at the skull vertex. Plast Reconstr Surg 1997; 99 (06) 1721-1726
  • 54 Elsalanty ME, Por YC, Genecov DG. , et al. Recombinant human BMP-2 enhances the effects of materials used for reconstruction of large cranial defects. J Oral Maxillofac Surg 2008; 66 (02) 277-285
  • 55 Por YC, Barceló CR, Salyer KE. , et al. Bone generation in the reconstruction of a critical size calvarial defect in an experimental model. Ann Acad Med Singapore 2007; 36 (11) 911-919
  • 56 Baker SB, Weinzweig J, Kirschner RE, Bartlett SP. Applications of a new carbonated calcium phosphate bone cement: early experience in pediatric and adult craniofacial reconstruction. Plast Reconstr Surg 2002; 109 (06) 1789-1796
  • 57 Costantino PD, Hiltzik D, Govindaraj S, Moche J. Bone healing and bone substitutes. Facial Plast Surg 2002; 18 (01) 13-26
  • 58 Petruzzelli GJ, Stankiewicz JA. Frontal sinus obliteration with hydroxyapatite cement. Laryngoscope 2002; 112 (01) 32-36
  • 59 Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 2006; 21 (05) 735-744
  • 60 Ripamonti U, Ma SS, Cunningham NS, Yeates L, Reddi AH. Reconstruction of the bone—bone marrow organ by osteogenin, a bone morphogenetic protein, and demineralized bone matrix in calvarial defects of adult primates. Plast Reconstr Surg 1993; 91 (01) 27-36
  • 61 Klifto CS, Gandi SD, Sapienza A. Bone graft options in upper-extremity surgery. J Hand Surg Am 2018; 43 (08) 755-761.e2
  • 62 Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am 2011; 93 (23) 2227-2236
  • 63 Goyal T, Sankineani SR, Tripathy SK. Local distal radius bone graft versus iliac crest bone graft for scaphoid nonunion: a comparative study. Musculoskelet Surg 2013; 97 (02) 109-114
  • 64 Yajima H, Tamai S, Ono H, Kizaki K. Vascularized bone grafts to the upper extremities. Plast Reconstr Surg 1998; 101 (03) 727-735 , discussion 736–737
  • 65 Waitayawinyu T, McCallister WV, Katolik LI, Schlenker JD, Trumble TE. Outcome after vascularized bone grafting of scaphoid nonunions with avascular necrosis. J Hand Surg Am 2009; 34 (03) 387-394
  • 66 Doi K, Oda T, Soo-Heong T, Nanda V. Free vascularized bone graft for nonunion of the scaphoid. J Hand Surg Am 2000; 25 (03) 507-519
  • 67 Repo JP, Sommarhem A, Roine RP, Sintonen H, Halonen T, Tukiainen E. Free vascularized fibular graft is reliable in upper extremity long-bone reconstruction with good long-term outcomes. J Reconstr Microsurg 2016; 32 (07) 513-519
  • 68 Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL. Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am 2006; 88 (07) 1442-1447
  • 69 Cassidy C, Jupiter JB, Cohen M. , et al. Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 2003; 85-A (11) 2127-2137
  • 70 Dickson KF, Friedman J, Buchholz JG, Flandry FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 2002; 53 (06) 1103-1108
  • 71 Bilic R, Simic P, Jelic M. , et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop 2006; 30 (02) 128-134
  • 72 Masquelet AC, Fitoussi F, Begue T, Muller GP. [Reconstruction of the long bones by the induced membrane and spongy autograft]. Ann Chir Plast Esthet 2000; 45 (03) 346-353
  • 73 Bohl MA, Mooney MA, Catapano JS. , et al. Pedicled vascularized bone grafts for posterior occipitocervical and cervicothoracic fusion: A cadaveric feasibility study. Oper Neurosurg (Hagerstown) 2018; 15 (03) 318-324
  • 74 Bohl MA, Almefty KK, Preul MC. , et al. Vascularized spinous process graft rotated on a paraspinous muscle pedicle for lumbar fusion: technique description and early clinical experience. World Neurosurg 2018; 115: 186-192
  • 75 Bohl MA, Hlubek RJ, Turner JD, Reece EM, Kakarla UK, Chang SW. Novel surgical treatment strategies for unstable lumbar osteodiscitis: a 3-patient case series. Oper Neurosurg (Hagerstown) 2018; 14 (06) 639-646
  • 76 Bohl MA, Mooney MA, Catapano JS. , et al. Pedicled vascularized bone grafts for posterior lumbosacral fusion: a cadaveric feasibility study and case report. Spine Deform 2018; 6 (05) 498-506
  • 77 Nagineni VV, James AR, Alimi M. , et al. Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures. Spine 2012; 37 (20) E1264-E1272
  • 78 Buser Z, Brodke DS, Youssef JA. , et al. Synthetic bone graft versus autograft or allograft for spinal fusion: a systematic review. J Neurosurg Spine 2016; 25 (04) 509-516
  • 79 Stephenson PK, Freeman MA, Revell PA, Germain J, Tuke M, Pirie CJ. The effect of hydroxyapatite coating on ingrowth of bone into cavities in an implant. J Arthroplasty 1991; 6 (01) 51-58
  • 80 Laurencin C, Khan Y, El-Amin SF. Bone graft substitute materials. Expert Rev Med Devices 2006; 3 (01) 49-57
  • 81 Bròdano GB, Giavaresi G, Lolli F. , et al. Hydroxyapatite-based biomaterials versus autologous bone graft in spinal fusion: an in vivo animal study. Spine 2014; 39 (11) E661-E668
  • 82 Gebert C, Wessling M, Gosheger G. , et al. Pelvic reconstruction with compound osteosynthesis following hemipelvectomy: a clinical study. Bone Joint J 2013; 95-B (10) 1410-1416
  • 83 Enneking W, Dunham W, Gebhardt M, Malawar M, Pritchard D. A system for the classification of skeletal resections. Chir Organi Mov 1990; 75 (1, Suppl): 217-240
  • 84 Aydinli U, Akesen B, Yalçinkaya U, Hakyemez B, Serifoğlu R. Iliosacral fixation after type-1 hemipelvectomy: a novel technique. Acta Orthop Belg 2012; 78 (03) 393-397
  • 85 Schwameis E, Dominkus M, Krepler P. , et al. Reconstruction of the pelvis after tumor resection in children and adolescents. Clin Orthop Relat Res 2002; (402) 220-235
  • 86 Beadel GP, McLaughlin CE, Aljassir F. , et al. Iliosacral resection for primary bone tumors: is pelvic reconstruction necessary?. Clin Orthop Relat Res 2005; 438 (438) 22-29
  • 87 Wang W, Bi WZ, Yang J, Han G, Jia JP. Pelvic reconstruction with allogeneic bone graft after tumor resection. Acta Ortop Bras 2013; 21 (03) 150-154
  • 88 Enneking WF, Dunham WK. Resection and reconstruction for primary neoplasms involving the innominate bone. J Bone Joint Surg Am 1978; 60 (06) 731-746
  • 89 Hugate Jr R, Sim FH. Pelvic reconstruction techniques. Orthop Clin North Am 2006; 37 (01) 85-97
  • 90 Cannon T, Grimer R, Carter S, Sneath R. Treatment of primary bone tumors of the ilium by local resection and fibular strut graft. Proceedings of 8th International Symposium on Limb Salvage. 1995 :77.
  • 91 Hollenbeck ST, Toranto JD, Taylor BJ. , et al. Perineal and lower extremity reconstruction. Plast Reconstr Surg 2011; 128 (05) 551e-563e
  • 92 Zalavras CG, Marcus RE, Levin LS, Patzakis MJ. Management of open fractures and subsequent complications. J Bone Joint Surg Am 2007; 89 (04) 884-895
  • 93 Levin LS. Vascularized fibula graft for the traumatically induced long-bone defect. J Am Acad Orthop Surg 2006; 14 (10 Spec No.): S175-S176
  • 94 Danziger MB, Abdo RV, Decker JE. Distal tibia bone graft for arthrodesis of the foot and ankle. Foot Ankle Int 1995; 16 (04) 187-190
  • 95 Alt V, Nawab A, Seligson D. Bone grafting from the proximal tibia. J Trauma 1999; 47 (03) 555-557
  • 96 Mahan KT. Calcaneal donor bone grafts. J Am Podiatr Med Assoc 1994; 84 (01) 1-9
  • 97 Stevenson S. Biology of bone grafts. Orthop Clin North Am 1999; 30 (04) 543-552
  • 98 Michelson JD, Curl LA. Use of demineralized bone matrix in hindfoot arthrodesis. Clin Orthop Relat Res 1996; (325) 203-208
  • 99 Scranton Jr PE. Comparison of open isolated subtalar arthrodesis with autogenous bone graft versus outpatient arthroscopic subtalar arthrodesis using injectable bone morphogenic protein-enhanced graft. Foot Ankle Int 1999; 20 (03) 162-165
  • 100 Schildhauer TA, Bauer TW, Josten C, Muhr G. Open reduction and augmentation of internal fixation with an injectable skeletal cement for the treatment of complex calcaneal fractures. J Orthop Trauma 2000; 14 (05) 309-317
  • 101 Thordarson DB, Hedman TP, Yetkinler DN, Eskander E, Lawrence TN, Poser RD. Superior compressive strength of a calcaneal fracture construct augmented with remodelable cancellous bone cement. J Bone Joint Surg Am 1999; 81 (02) 239-246
  • 102 Schon L, Dunn R, Gamez L. Cell concentrate from autologous bone marrow augments bone grafting in the lower extremity. AOFAS Annual Meeting. 2010
  • 103 McNamara IR. Impaction bone grafting in revision hip surgery: past, present and future. Cell Tissue Bank 2010; 11 (01) 57-73
  • 104 Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 (03) (Suppl. 03) S20-S27
  • 105 Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol 2005; 65 (15–16): 2385-2406