Subscribe to RSS
DOI: 10.1055/s-0039-1692649
Independent Suture Tape Internal Brace Reinforcement of Bone–Patellar Tendon–Bone Allografts: Biomechanical Assessment in a Full-ACL Reconstruction Laboratory Model
Abstract
Internal bracing for anterior cruciate ligament (ACL) surgery is a relatively new concept. The purpose of this study was to evaluate the effects of an “independent” button-fixed internal brace on the biomechanical properties of ACL reconstruction in a full-construct experimental model. Three groups (n = 10 each) were tested in a full-construct porcine-bone model with human bone–patellar tendon–bone allografts using different reconstruction techniques: interference screw fixation on femur and tibia (S-S group), adjustable-loop device (ALD) fixation on the femur with tibial interference screw without suture tape (ALD-S group), and with internal brace (ALD-S-IB group). Measured outcomes included cyclic displacement, stiffness, and ultimate load to failure. The ALD-S-IB group (2.9 ± 0.8 mm) displaced significantly less than the ALD-S (4.2 ± 0.9 mm; p = 0.015) and S-S group (4.3 ± 1.1 mm; p = 0.017). No significant difference was found between the ALD-S and the S-S group. Construct stiffness was significantly higher for the ALD-S-IB group (156 ± 23 N/mm) and the ALD-S group (122 ± 28 N/mm) than for the S-S group (104 ± 40 N/mm; p = 0.003 and p = 0.0042), but there was no significant difference between both ALD groups. Similarly, ultimate loads in the ALD-S-IB (758 ± 128 N) and the ALD-S groups (628 ± 223 N) were significantly greater than in the S-S group (416 ± 167 N; p < 0.001 and p = 0.025), but there was no significant difference between ALD groups. Adding an internal brace reinforcement to an ALD in a full-construct experimental model significantly decreased cyclic displacement by 31% without increasing construct stiffness or ultimate load significantly. These results indicate that suture tape internal bracing of bone–patellar tendon–bone allograft ACL reconstruction decreases cyclic displacement during experimental testing, which has clinical implications regarding initial construct stability.
Publication History
Received: 19 February 2019
Accepted: 05 May 2019
Article published online:
03 July 2019
© 2020. Thieme. All rights reserved.
Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.
-
References
- 1 Mall NA, Chalmers PN, Moric M. , et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 2014; 42 (10) 2363-2370
- 2 Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med 2008; 359 (20) 2135-2142
- 3 Rodeo SA, Kawamura S, Kim HJ, Dynybil C, Ying L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: an effect of graft-tunnel motion?. Am J Sports Med 2006; 34 (11) 1790-1800
- 4 Sherman SL, Chalmers PN, Yanke AB. , et al. Graft tensioning during knee ligament reconstruction: principles and practice. J Am Acad Orthop Surg 2012; 20 (10) 633-645
- 5 Carmichael JR, Cross MJ. Why bone-patella tendon-bone grafts should still be considered the gold standard for anterior cruciate ligament reconstruction. Br J Sports Med 2009; 43 (05) 323-325
- 6 Hospodar SJ, Miller MD. Controversies in ACL reconstruction: bone-patellar tendon-bone anterior cruciate ligament reconstruction remains the gold standard. Sports Med Arthrosc Rev 2009; 17 (04) 242-246
- 7 Walsh MP, Wijdicks CA, Parker JB, Hapa O, LaPrade RF. A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 2009; 37 (01) 160-167
- 8 Stadelmaier DM, Lowe WR, Ilahi OA, Noble PC, Kohl III HW. Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. Am J Sports Med 1999; 27 (06) 778-783
- 9 Scheffler SU, Südkamp NP, Göckenjan A, Hoffmann RF, Weiler A. Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 2002; 18 (03) 304-315
- 10 Sarzaeem MM, Najafi F, Razi M, Najafi MA. ACL reconstruction using bone-patella tendon-bone autograft: press-fit technique vs. interference screw fixation. Arch Orthop Trauma Surg 2014; 134 (07) 955-962
- 11 Saccomanno MF, Shin JJ, Mascarenhas R. , et al. Clinical and functional outcomes after anterior cruciate ligament reconstruction using cortical button fixation versus transfemoral suspensory fixation: a systematic review of randomized controlled trials. Arthroscopy 2014; 30 (11) 1491-1498
- 12 Anderson MJ, Browning III WM, Urband CE, Kluczynski MA, Bisson LJ. A systematic summary of systematic reviews on the topic of the anterior cruciate ligament. Orthop J Sports Med 2016; 4 (03) 2325967116634074
- 13 Kleweno CP, Jacir AM, Gardner TR, Ahmad CS, Levine WN. Biomechanical evaluation of anterior cruciate ligament femoral fixation techniques. Am J Sports Med 2009; 37 (02) 339-345
- 14 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 2003; 31 (02) 182-188
- 15 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 2003; 31 (02) 174-181
- 16 Smith PA, DeBerardino TM. Tibial fixation properties of a continuous-loop ACL hamstring graft construct with suspensory fixation in porcine bone. J Knee Surg 2015; 28 (06) 506-512
- 17 Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 1991; 19 (03) 217-225
- 18 Lanzetti RM, Monaco E, De Carli A. , et al. Can an adjustable-loop length suspensory fixation device reduce femoral tunnel enlargement in anterior cruciate ligament reconstruction? A prospective computer tomography study. Knee 2016; 23 (05) 837-841
- 19 Monaco E, Fabbri M, Lanzetti RM, Del Duca A, Labianca L, Ferretti A. Biomechanical comparison of four coupled fixation systems for ACL reconstruction with bone socket or full-tunnel on the tibial side. Knee 2017; 24 (04) 705-710
- 20 Petre BM, Smith SD, Jansson KS. , et al. Femoral cortical suspension devices for soft tissue anterior cruciate ligament reconstruction: a comparative biomechanical study. Am J Sports Med 2013; 41 (02) 416-422
- 21 Noonan BC, Dines JS, Allen AA, Altchek DW, Bedi A. Biomechanical evaluation of an adjustable loop suspensory anterior cruciate ligament reconstruction fixation device: the value of retensioning and knot tying. Arthroscopy 2016; 32 (10) 2050-2059
- 22 Smith PA, Piepenbrink M, Smith SK, Bachmaier S, Bedi A, Wijdicks CA. Adjustable- versus fixed-loop devices for femoral fixation in ACL reconstruction: an in vitro full-construct biomechanical study of surgical technique-based tibial fixation and graft preparation. Orthop J Sports Med 2018; 6 (04) 2325967118768743
- 23 Mackay GM, Blyth MJ, Anthony I, Hopper GP, Ribbans WJ. A review of ligament augmentation with the InternalBrace: the surgical principle is described for the lateral ankle ligament and ACL repair in particular, and a comprehensive review of other surgical applications and techniques is presented. Surg Technol Int 2015; 26: 239-255
- 24 Smith JO, Yasen SK, Palmer HC, Lord BR, Britton EM, Wilson AJ. Paediatric ACL repair reinforced with temporary internal bracing. Knee Surg Sports Traumatol Arthrosc 2016; 24 (06) 1845-1851
- 25 Smith PA, Bley JA. Allograft anterior cruciate ligament reconstruction utilizing internal brace augmentation. Arthrosc Tech 2016; 5 (05) e1143-e1147
- 26 Bachmaier S, Smith PA, Bley J, Wijdicks CA. Independent suture tape reinforcement of small and standard diameter grafts for anterior cruciate ligament reconstruction: a biomechanical full construct model. Arthroscopy 2018; 34 (02) 490-499
- 27 Li G, DeFrate LE, Sun H, Gill TJ. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med 2004; 32 (06) 1415-1420
- 28 Bedi A, Kovacevic D, Fox AJ. , et al. Effect of early and delayed mechanical loading on tendon-to-bone healing after anterior cruciate ligament reconstruction. J Bone Joint Surg Am 2010; 92 (14) 2387-2401
- 29 Ahmad CS, Gardner TR, Groh M, Arnouk J, Levine WN. Mechanical properties of soft tissue femoral fixation devices for anterior cruciate ligament reconstruction. Am J Sports Med 2004; 32 (03) 635-640
- 30 Wilson WT, Hopper GP, Byrne PA, MacKay GM. Anterior cruciate ligament repair with internal brace ligament augmentation. Surg Technol Int 2016; 29: 273-278
- 31 Cook JL, Smith P, Stannard JP. , et al. A canine arthroscopic anterior cruciate ligament reconstruction model for study of synthetic augmentation of tendon allografts. J Knee Surg 2017; 30 (07) 704-711
- 32 Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR. Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 1994; 22 (05) 632-644
- 33 Woo SL, Debski RE, Withrow JD, Janaushek MA. Biomechanics of knee ligaments. Am J Sports Med 1999; 27 (04) 533-543
- 34 Shelburne KB, Pandy MG, Anderson FC, Torry MR. Pattern of anterior cruciate ligament force in normal walking. J Biomech 2004; 37 (06) 797-805
- 35 Rupp S, Krauss PW, Fritsch EW. Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy 1997; 13 (01) 61-65