Synlett 2020; 31(07): 708-712
DOI: 10.1055/s-0039-1691596
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of Oxime Amino Ethers via Lewis Acid Catalyzed SN2-Type Ring Opening of Activated Aziridines with Aryl Aldehyde Oximes

,
Subhomoy Das
,
Navya Chauhan
,
Pronay K. Biswas
,
M.K.G. is thankful to the Department of Science and Technology (DST), India for financial support. A.B. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India for a research fellowship. S.D. and N.C. thank University Grants Commission (UGC), New Delhi, India for Senior Research Fellowships.
Further Information

Publication History

Received: 20 December 2019

Accepted after revision: 21 January 2020

Publication Date:
02 March 2020 (online)


Abstract

A simple strategy to access a wide range of substituted oxime amino ethers in good to high yields via Lewis acid catalyzed SN2-type ring opening of activated aziridines with aryl aldehyde oximes is reported.

Supporting Information

 
  • References and Notes

    • 1a Ueda M, Miyabe H, Sugino H, Miyata O, Naito T. Angew. Chem. Int. Ed. 2005; 44: 6190
    • 1b Fujino H, Nagatomo M, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Angew. Chem. Int. Ed. 2017; 56: 11865
    • 1c Nagatomo M, Nishiyama H, Fujino H, Inoue M. Angew. Chem. Int. Ed. 2015; 54: 1537
    • 1d Miyabe H, Nishimura A, Ueda M, Naito T. Chem. Commun. 2002; 1454
    • 1e Miyabe H, Fujii K, Naito T. Org. Biomol. Chem. 2003; 1: 381
    • 1f Miyabe H, Konishi C, Naito T. Org. Lett. 2000; 2: 1443
    • 1g Miyata O, Muroya K, Kobayashi T, Yamanaka R, Kajisa S, Koide J, Naito T. Tetrahedron 2002; 58: 4459
  • 2 Miyabe H, Ueda M, Fujii K, Nishimura A, Naito T. J. Org. Chem. 2003; 68: 5618
  • 3 Huang X, Ortiz-Marciales M, Huang K, Stepanenko V, Merced FG, Ayala AM, Correa W, De Jesús M. Org. Lett. 2007; 9: 1793
  • 4 Takeda N, Miyata O, Naito T. Eur. J. Org. Chem. 2007; 1491
  • 5 Miyata O, Takahashi S, Tamura A, Ueda M, Naito T. Tetrahedron 2008; 64: 1270
  • 6 Bragnier N, Guillot R, Scherrmann M.-C. Org. Biomol. Chem. 2009; 7: 3918
  • 7 Cooper TS, Larigo AS, Laurent P, Moody CJ, Takle AK. Org. Biomol. Chem. 2005; 3: 1252
  • 8 Jeon G.-H, Yoon J.-Y, Kim S, Kim SS. Synlett 2000; 128
  • 9 Wu G, Wang J, Liu C, Sun M, Zhang L, Ma Y, Cheng R, Ye J. Org. Chem. Front. 2019; 6: 2245
  • 10 Dong Y, Liu G. J. Org. Chem. 2017; 82: 3864
  • 11 Saha R, Perveen N, Nihesh N, Sekar G. Adv. Synth. Catal. 2019; 361: 510
    • 12a Fu X, Yang J, Deng K, Shao L, Xia C, Ji Y. Org. Lett. 2019; 21: 3505
    • 12b Li Y, Chen H, Qu L.-B, Houk KN, Lan Y. ACS Catal. 2019; 9: 7154
    • 12c Behnke NE, Lovato K, Yousufuddin M, Kürti L. Angew. Chem. 2019; 131: 14357
    • 12d Huang F, Zhang S. Org. Lett. 2019; 21: 7430
    • 13a Cao Z, Liu Z, Liu Y, Du H. J. Org. Chem. 2011; 76: 6401
    • 13b Li C, Zhang H, Cui Y, Zhang S, Zhao Z, Choi MC. K, Chan AS. C. Synth. Commun. 2003; 33: 543
    • 13c Soltani RadM. N, Khalafi-Nezhad A, Karimitabar F, Behrouz S. Synthesis 2010; 1724
    • 13d Jia X, Wang X, Yang C, Da Y, Yang L, Liu Z. Tetrahedron 2009; 65: 2334
    • 13e Zeng H, Zhu C, Jiang H. Org. Lett. 2019; 21: 1130
  • 14 Abele E, Lukevics E. Synthesis of Heterocycles from Oximes. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. The Chemistry of Functional Groups. Rappoport Z, Liebman JF. John Wiley & Sons; Chichester: 2008: 233
  • 15 Jin J, Li Y, Wang Z.-J, Qian W.-X, Bao W.-L. Eur. J. Org. Chem. 2010; 1235
    • 16a Ghorai MK, Bhattacharyya A, Das S, Chauhan N. Top. Heterocycl. Chem. 2016; 41: 49
    • 16b Dolfen J, De Kimpe N, D’hooghe M. Synlett 2016; 27: 1486
    • 16c Takeda Y, Kuroda A, Sameera WM. C, Morokuma K, Minakata S. Chem. Sci. 2016; 7: 6141
    • 16d Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S. J. Am. Chem. Soc. 2014; 136: 8544
    • 16e Callebaut G, Meiresonne T, De Kimpe N, Mangelinckx S. Chem. Rev. 2014; 114: 7954
    • 16f Schneider C. Angew. Chem. Int. Ed. 2009; 48: 2082
    • 16g Aziridines and Epoxides in Organic Synthesis. Yudin AK. Wiley-VCH; Weinheim: 2006: 517
    • 16h Stankovic S, D'hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 16i Dolfen J, Vervisch K, De Kimpe N, D’hooghe M. Chem. Eur. J. 2016; 22: 4945
    • 16j D’hooghe M, Ha H.-J, Macha L. Synthesis 2019; 51: 1491
    • 16k Remete AM, Kiss L. Eur. J. Org. Chem. 2019; 5574
    • 17a Mal A, Goswami G, Ahmad WaniI, Ghorai MK. Chem. Commun. 2017; 53: 10263
    • 17b Pradhan S, Shahi CK, Bhattacharyya A, Chauhan N, Ghorai MK. Org. Lett. 2017; 19: 3438
    • 17c Shahi CK, Bhattacharyya A, Nanaji Y, Ghorai MK. J. Org. Chem. 2017; 82: 37
    • 17d Pradhan S, Shahi CK, Bhattacharyya A, Ghorai MK. Chem. Commun. 2018; 54: 8583
    • 17e Chauhan N, Pradhan S, Ghorai MK. J. Org. Chem. 2019; 84: 1757
    • 18a Bhattacharyya A, Kavitha CV, Ghorai MK. J. Org. Chem. 2016; 81: 6433
    • 18b Ghorai MK, Tiwari DP. J. Org. Chem. 2013; 78: 2617
    • 18c Wani IA, Sayyad M, Ghorai MK. Chem. Commun. 2017; 53: 4386
    • 18d Mal A, Sayyad M, Wani IA, Ghorai MK. J. Org. Chem. 2017; 82: 4
    • 18e Lin T.-Y, Wu H.-H, Feng J.-J, Zhang J. Org. Lett. 2017; 19: 6526
    • 18f Bhattacharyya A, Shahi CK, Pradhan S, Ghorai MK. Org. Lett. 2018; 20: 2925
    • 19a Nikitjuka A, Jirgensons A. Chem. Heterocycl. Compd. 2014; 49: 1544
    • 19b Nikitjuka A, Shestakova I, Romanchikova N, Jirgensons A. Chem. Heterocycl. Compd. 2015; 51: 647
  • 20 Abele E. Heterocycl. Lett. 2013; 3: 229
  • 21 Tabarki MA, Besbes R. Tetrahedron 2014; 70: 1060
  • 22 Dondas HA, Cummins JE, Grigg R, Thornton-Pett M. Tetrahedron 2001; 57: 7951
  • 23 Chen D.-D, Ding C.-H, Hou X.-L, Dai L.-X. Chem. J. Chin. Univ. 2011; 32: 694
  • 24 See the Supporting Information for details.
  • 25 Ghorai MK, Shukla D, Bhattacharyya A. J. Org. Chem. 2012; 77: 3740
  • 26 Representative Experimental Procedure for the BF3·OEt2-Catalyzed Ring Opening of Aziridines with Aldehyde Oximes (Scheme 2) To a solution of the aziridine 1ai (50 mg, 1.0 equiv) and 4-methoxybenzaldehyde oxime (2a, 1.5 equiv) in 2.0 mL dry dichloromethane was added anhydrous BF3·OEt2 (0.2 equiv) with a microsyringe at 0 °C under an argon atmosphere. The reaction mixture was stirred for an appropriate time (Scheme 2) at an appropriate temperature while the progress of the reaction was monitored by TLC. Upon completion the reaction was quenched with saturated aqueous NaHCO3 solution. The aqueous layer was extracted with CH2Cl2 (3 × 5.0 mL) and it was washed with brine solution. The combined organic layers were dried over anhydrous Na2SO4, and the solvent was removed under reduced pressure. The crude concentrate was purified by flash column chromatography on silica gel (230–400 mesh) using 10% ethyl acetate in petroleum ether to provide the pure products 3ai.(E)-N-(2-{[(4-methoxybenzylidene)amino]oxy}-2-phenylethyl)-4-methylbenzenesulfonamide (3a)The general method described above was followed when the aziridine 1a (50.0 mg, 0.1829 mmol, 1.0 equiv) was reacted with the 4-methoxybenzaldehyde oxime (2a, 41.5 mg, 0.274 mmol, 1.5 equiv) in the presence of BF3·OEt2 (4.6 μL, 0.037 mmol, 20 mol %) in dichloromethane (2.0 mL) at 0  °C to rt for 2 h to afford the product 3a (64.5 mg, 0.1518 mmol) as a white solid in 83 % yield ; mp 98–100  °C. Rf = 0.30 (EtOAc/petroleum ether, 3:7). IR (KBr): 3283, 2955, 2925, 2854, 1606, 1572, 1513, 1495, 1454, 1419, 1329, 1306, 1252, 1161, 1092, 1063, 1029, 955, 832, 814, 756, 701, 664, 602, 550 cm– 1. 1H NMR (500 MHz, CDCl3): δ = 8.00 (s, 1 H), 7.71 (d, 2 H, J = 8.3 Hz), 7.42 (d, 2 H, J = 8.6 Hz), 7.33–7.23 (m, 7 H), 6.86 (d, 2 H, J = 8.6 Hz), 5.18 (dd, 1 H, J = 8.3, 3.9 Hz), 5.01–4.99 (m, 1 H), 3.82 (s, 3 H), 3.46–3.41 (m, 1 H), 3.37–3.32 (m, 1 H), 2.39 (s, 3 H). 13 C{1 H} NMR (125 MHz, CDCl3): δ = 161.3, 149.7, 143.5, 138.3, 137.0, 129.8, 128.7, 128.6, 128.3, 127.2, 126.7, 124.3, 114.2, 82.9, 55.4, 48.1, 29.8, 21.6. HRMS (ESI-TOF): m/z calcd for C23H25N2O4S [ M + H ]+: 425.1535; found: 425.1529