Synlett 2020; 31(07): 677-682
DOI: 10.1055/s-0039-1691579
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Triggered Decarboxylative Alkylation of 8-Acylaminoquinoline with N-Hydroxyphthalimide Ester

Bin Sun
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Deyu Li
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Xiaohui Zhuang
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
d   The Development Laboratory Center of Research Institute of Experiment and Detection of Xinjiang Oilfield Company, Karamay 834000, P. R. of China
,
Rui Zhu
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Aertuke Aisha
d   The Development Laboratory Center of Research Institute of Experiment and Detection of Xinjiang Oilfield Company, Karamay 834000, P. R. of China
,
Can Jin
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: jincan@zjut.edu.cn
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
c   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant No. 21606202) for financial support. We are also grateful to the College of Pharmaceutical Sciences, Zhejiang University of Technology and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals for the financial help.
Further Information

Publication History

Received: 25 December 2019

Accepted after revision: 04 January 2020

Publication Date:
28 January 2020 (online)


Abstract

A facile protocol for visible-light-induced decarboxylative radical coupling of NHP esters with 8-aminoquinoline amides is reported, affording a highly efficient approach to synthesize a variety of 2-alkylated or 2,4-dialkylated 8-aminoquinoline derivatives. The reaction proceeds smoothly without adding any ligand, and provides the corresponding products containing a wide range of functional groups in moderate to excellent yields. This reaction uses readily available starting materials, and proceeds under mild conditions and with operational simplicity.

Supporting Information

 
  • References and Notes

    • 1a Solomon VR, Lee H. Curr. Med. Chem. 2011; 18: 1488
    • 1b Chu XM, Wang C, Liu W, Liang LL, Gong KK, Zhao CY, Sun KL. Eur. J. Med. Chem. 2019; 161: 101
    • 1c Fu MC, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
    • 1d Cheng MW, Shang R, Fu Y. ACS Catal. 2017; 7: 907
    • 2a Shiraki H, Kozar MP, Melendez V, Hudson TH, Ohrt C, Magill AJ, Lin AJ. J. Med. Chem. 2011; 54: 131
    • 2b Jain M, Vangapandu S, Sachdeva S, Singh S, Singh PP, Jena GB, Tikoo K, Ramarao P, Kaul CL, Jain R. J. Med. Chem. 2004; 47: 285
    • 2c Zhang WX, Huang DY, Huang MJ, Huang J, Wang D, Liu XG, Nguyen M, Vendier L, Mazeres S, Robert A, Liu Y, Meunier B. ChemMedChem 2018; 13: 684
    • 2d Colomb J, Becker G, Fieux S, Zimmer L, Billard T. J. Med. Chem. 2014; 57: 3884
    • 2e Hughes CC, MacMillan JB, Gaudencio SP, Fenical W, La Clair JJ. Angew. Chem. Int. Ed. 2009; 48: 728
  • 3 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 4a Chen JC, Wang TY, Liu YP, Wang T, Lin AJ, Yao HQ, Xu JY. Org. Chem. Front. 2017; 4: 622
    • 4b Motati DR, Uredi D, Watkins EB. Chem. Sci. 2018; 9: 1782
    • 4c Ma B, Lu FL, Yang HM, Gu X, Li Z, Li R, Pei HQ, Luo D, Zhang H, Lei AW. Asian J. Org. Chem. 2019; 8: 1136
    • 5a Mariappan A, Das KM, Jeganmohan M. Org. Biomol. Chem. 2018; 16: 3419
    • 5b Chen H, Li PH, Wang M, Wang L. Org. Lett. 2016; 18: 4794
    • 6a Zhu XL, Qiao L, Ye PP, Ying BB, Xu J, Shen C, Zhang PF. RSC Adv. 2016; 6: 89979
    • 6b He Y, Zhao NN, Qiu LQ, Zhang XY, Fan XS. Org. Lett. 2016; 18: 6054
    • 7a Xia CC, Wang K, Xu J, Shen C, Sun D, Li HS, Wang GD, Zhang PF. Org. Biomol. Chem. 2017; 15: 531
    • 7b Xu J, Shen C, Zhu XL, Zhang PF, Ajitha MJ, Huang KW, An ZF, Liu XG. Chem. Asian J. 2016; 11: 882
    • 7c Thrimurtulu N, Dey A, Pal K, Nair A, Kumar S, Volla CM. R. ChemistrySelect 2017; 2: 7251
    • 8a Qiao HJ, Sun SY, Zhang Y, Zhu HM, Yu XM, Yang F, Wu YS, Li ZX, Wu YJ. Org. Chem. Front. 2017; 4: 1981
    • 8b Sun MM, Sun SY, Qiao HJ, Yang F, Zhu Y, Kang JX, Wu YS, Wu YJ. Org. Chem. Front. 2016; 3: 1646
    • 9a Sahoo T, Sen C, Singh H, Suresh E, Sun D, Ghosh SC. Adv. Synth. Catal. 2019; 361: 3950
    • 9b Sen C, Sahoo T, Singh H, Suresh E, Ghosh SC. J. Org. Chem. 2019; 84: 9869
    • 10a Minisi F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
    • 10b Minisci F, Vismara E, Fontana F, Morini G, Serravalle M. J. Org. Chem. 1987; 52: 730
    • 10c Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
  • 11 Xia XF, Zhu SL, Gu Z, Wang HJ. RSC Adv. 2015; 5: 28892
  • 12 Ghosh T, Maity P, Ranu BC. Org. Lett. 2018; 20: 1011
    • 13a Yi H, Zhang GT, Wang HM, Huang ZY, Wang J, Singh AK, Lei AW. Chem. Rev. 2017; 117: 9016
    • 13b Shi L, Xia WJ. Chem. Soc. Rev. 2012; 41: 7687
    • 13c Yoon TP, Ischay MA, Du JN. Nat. Chem. 2010; 2: 527
    • 14a Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 14b Schwarz J, Konig B. Green Chem. 2016; 18: 4743
    • 14c Deng WL, Feng WW, Li YJ, Bao HL. Org. Lett. 2018; 20: 4245
    • 14d Wang X, Han YF, Ouyang XH, Li JH. Chem. Commun. 2019; 55: 14637
    • 14e Guo JY, Zhang ZY, Guan T, Mao LW, Bao Q, Zhao K, Loh TP. Chem. Sci. 2019; 10: 8792
    • 15a Jin C, Yan ZY, Sun B, Yang J. Org. Lett. 2019; 21: 2064
    • 15b Yan ZY, Sun B, Zhang X, Zhuang XH, Yang J, Su WK, Jin C. Chem. Asian J. 2019; 14: 3344
    • 15c Sun B, Deng JC, Li DY, Jin C, Su WK. Tetrahedron Lett. 2018; 59: 4364
    • 15d Jin C, Zhuang XH, Sun B, Li DY, Zhu R. Asian J. Org. Chem. 2019; 8: 1490
    • 15e Wang JY, Sun B, Zhang L, Xu TW, Xie YY, Jin C. Asian J. Org. Chem. 2019; 8: 1942
    • 15f Sun B, Yang J, Zhang L, Shi RC, Zhang X, Xu TW, Zhuang XH, Zhu R, Yu CM, Jin C. Asian J. Org. Chem. 2019; 8: 2058
    • 15g Sun B, Yin S, Zhuang XH, Jin C, Su WK. Org. Biomol. Chem. 2018; 16: 6017
    • 15h Sun B, Wang Y, Li DY, Jin C, Su WK. Org. Biomol. Chem. 2018; 16: 2902
    • 15i Jin C, Zhu R, Sun B, Zhang L, Zhuang XH. Asian J. Org. Chem. 2019; 8: 2213
  • 16 Synthesis of 3; Typical Procedure for 3aa: A 10 mL Schlenk-tube was charged with N-(quinolin-8-yl)benzamide (1a; 124 mg, 0.5 mmol), tert-butyl NHP ester 2a (247 mg, 1.0 mmol), fac-Ir(ppy)3 (6 mg, 0.015 mmol), trifluoroacetic acid (29 mg, 0.25 mmol) and DMSO (3.0 mL). The tube was evacuated and backfilled with N2 for three times. The mixture was then irradiated with 3 W white CFL lamps and stirred for 12 hours at room temperature. After the reaction finished, the reaction was quenched with water (10 mL) and the mixture was extracted with DCM (10 mL). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel column (ethyl acetate/hexane, 1:200) to afford 3aa (123 mg, 81%) as a white solid; mp 131.0–132.0 °C. 1H NMR (400 MHz, CDCl3): δ = 11.04 (s, 1 H), 8.92 (d, J = 7.1 Hz, 1 H), 8.20–8.11 (m, 3 H), 7.68–7.48 (m, 6 H), 1.55 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 167.6, 156.3, 148.6, 144.4, 137.1, 136.5, 134.0, 126.6, 126.0, 121.3, 119.0, 116.3, 114.8, 112.4, 38.3, 30.1. HRMS: m/z [M + H]+ calcd for C20H21N2O: 305.1648; found: 305.1638.