Synlett 2020; 31(04): 349-354
DOI: 10.1055/s-0039-1691563
letter
© Georg Thieme Verlag Stuttgart · New York

TMSOTf-Promoted Sulfinylation of Electron-Rich Aromatics with Sodium Arylsulfinates

Yuan-Zhao Ji
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Hui-Jing Li
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Hao-Ran Yang
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Zheng-Yan Zhang
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Li-Jun Xie
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Yan-Chao Wu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
› Author Affiliations
This project was funded by the Key Research and Development Program of Shandong (Grant No. 2019GSF108089), the Natural Science Foundation of Shandong Province (ZR2019MB009), the National Natural Science Foundation of China (Grant No. 21672046 and 21372054), and the Found from the Huancui District of Weihai City.
Further Information

Publication History

Received: 03 October 2019

Accepted after revision: 16 December 2019

Publication Date:
09 January 2020 (online)


Abstract

A new transition-metal-free route for the direct sulfinylation of electron-rich aromatics with sodium arylsulfinates in the presence of TMSOTf is reported. Various electron-rich aromatics, including pyrroles, thiophenes, indoles, and electron-rich arenes, with sodium arylsulfinates are converted into the corresponding sulfoxides in moderate to excellent yields. This protocol possesses many advantages such as readily available and stable starting materials, broad substrate scopes, and transition-metal-free reaction conditions.

Supporting Information

 
  • References and Notes

    • 1a Otocka S, Kwiatkowska M, Madalińska L, Kiełbasiński P. Chem. Rev. 2017; 117: 4147
    • 1b Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 1c Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
    • 1d Carreño MC, Hernández-Torres G, Ribagorda M, Urbano A. Chem. Commun. 2009; 6129
    • 1e Pellissier H. Tetrahedron 2006; 62: 5559
    • 1f Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
    • 1g Bentley R. Chem. Soc. Rev. 2005; 34: 609
    • 1h Bur SK. Chem. Rev. 2004; 104: 2401
    • 1i Carreño MC. Chem. Rev. 1995; 95: 1717
    • 2a Wyche TP, Piotrowski JS, Hou Y, Braun D, Deshpande R, McIlwain S, Ong IM, Myers CL, Guzei IA, Westler WM, Andes DR, Bugni TS. Angew. Chem. Int. Ed. 2014; 53: 11583
    • 2b El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano D, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. J. Nat. Prod. 2010; 73: 1306
    • 2c Dini I, Tenore GC, Dini A. J. Nat. Prod. 2008; 71: 2036
    • 2d Kim S, Kubec R, Musah RA. J. Ethnopharmacol. 2006; 104: 188
    • 2e Suwanborirux K, Charupant K, Amnuoypol S, Pummangura S, Kubo A, Saito N. J. Nat. Prod. 2002; 65: 935
    • 2f Marino JP, McClure MS, Holub DP, Comasseto JV, Tucci FC. J. Am. Chem. Soc. 2002; 124: 1664
    • 3a Ayyanathan K, Kesaraju S, Dawson-Scully K, Weissbach H. PLoS One 2012; 7: e39949
    • 3b Khiar N, Werner S, Mallouk S, Lieder F, Alcudia A, Fernández I. J. Org. Chem. 2009; 74: 6002
    • 3c Shin JM, Cho YM, Sachs G. J. Am. Chem. Soc. 2004; 126: 7800
    • 3d Olbe L, Carlsson E, Lindberg P. Nat. Rev. Drug Discovery 2003; 2: 132
    • 3e Haanen C. Curr. Opin. Invest. Drugs 2001; 2: 677
    • 3f Yoshida T, Kito M, Tsujii M, Nagasawa T. Biotechnol. Lett. 2001; 23: 1217
    • 3g Han EK. H, Arber N, Yamamoto H, Lim JT. E, Delohery T, Pamukcu R, Piazza GA, Xing WQ, Weinstein IB. Breast Cancer Res. Treat. 1998; 48: 195
    • 3h Thompson HJ, Jiang C, Lu J, Mehta RG, Piazza GA, Paranka NS, Pamukcu R, Ahnen DJ. Cancer Res. 1997; 57: 267
    • 3i Focke M, Feld A, Lichtenthaler HK. FEBS Lett. 1990; 261: 106
    • 3j Kotelanski B, Grozmann RJ, Cohn JN. Clin. Pharmacol. Ther. 1973; 14: 427
    • 4a Seidel FW, Frieß S, Heinemann FW, Chelouan A, Scheurer A, Grasruck A, Herrera A, Dorta R. Organometallics 2018; 37: 1160
    • 4b Trost BM, Ryan MC, Rao M, Markovic TZ. J. Am. Chem. Soc. 2014; 136: 17422
    • 4c Xue F, Wang D, Li X, Wan B. J. Org. Chem. 2012; 77: 3071
    • 4d Jiang C, Covell DJ, Stepan AF, Plummer MS, White MC. Org. Lett. 2012; 14: 1386
    • 4e Thaler T, Guo LN, Steib AK, Raducan M, Karaghiosoff K, Mayer P, Knochel P. Org. Lett. 2011; 13: 3182
    • 4f Stang EM, White MC. J. Am. Chem. Soc. 2011; 133: 14892
    • 4g Chen QA, Dong X, Chen MW, Wang DS, Zhou YG, Li YX. Org. Lett. 2010; 12: 1928
    • 4h Chen J, Chen J, Lang F, Zhang X, Cun L, Zhu J, Deng J, Liao J. J. Am. Chem. Soc. 2010; 132: 4552
    • 4i Mariz R, Luan X, Gatti M, Linden A, Dorta R. J. Am. Chem. Soc. 2008; 130: 2172
    • 4j Mellah M, Voituriez A, Schulz E. Chem. Rev. 2007; 107: 5133
    • 4k Kobayashi S, Ogawa C, Konishi H, Sugiura M. J. Am. Chem. Soc. 2003; 125: 6610
    • 5a Zhang M, Jia T, Sagamanova IK, Pericás MA, Walsh PJ. Org. Lett. 2015; 17: 1164
    • 5b Schwan AL. ChemCatChem 2015; 7: 226
    • 5c Zhang M, Jia T, Yin H, Carroll PJ, Schelter EJ, Walsh PJ. Angew. Chem. Int. Ed. 2014; 53: 10755
    • 7a Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chem. Soc. Rev. 2018; 47: 1307
    • 7b Silva F, Baker A, Stansall J, Michalska W, Yusubov MS, Graz M, Saunders R, Evans GJ. S, Wirth T. Eur. J. Org. Chem. 2018; 2134
    • 7c Xie Y, Li Y, Zhou S, Zhou S, Zhang Y, Chen M, Li Z. Synlett 2018; 29: 340
    • 7d Bulman Page PC, Buckley BR, Elliott C, Chan Y, Dreyfus N, Marken F. Synlett 2016; 27: 80
    • 7e Neveselý T, Svobodová E, Chudoba J, Sikorski M, Cibulka R. Adv. Synth. Catal. 2016; 358: 1654
    • 7f Wojaczyńska E, Wojaczyńsk J. Chem. Rev. 2010; 110: 4303
    • 7g Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
    • 8a Han Z, Krishnamurthy D, Grover P, Fang QK, Su X, Wilkinson HS, Lu ZH, Magiera D, Senanayake CH. Tetrahedron 2005; 61: 6386
    • 8b Hiroi K, Kato F. Tetrahedron 2001; 57: 1543
    • 9a Wu C, Berritt S, Liang X, Walsh PJ. Org. Lett. 2019; 21: 960
    • 9b Wang L, Chen M, Zhang P, Li W, Zhang J. J. Am. Chem. Soc. 2018; 140: 3467
    • 9c Kim DH, Lee J, Lee A. Org. Lett. 2018; 20: 764
    • 9d Jia T, Zhang M, McCollom SP, Bellomo A, Montel S, Mao J, Dreher SD, Welch CJ, Regalado EL, Williamson RT, Manor BC, Tomson NC, Walsh PJ. J. Am. Chem. Soc. 2017; 139: 8337
    • 9e Jiang H, Jia T, Zhang M, Walsh PJ. Org. Lett. 2016; 18: 972
    • 9f Jia T, Zhang M, Sagamanova IK, Wang CY, Walsh PJ. Org. Lett. 2015; 17: 1168
    • 9g Jia T, Zhang M, Jiang H, Wang CY, Walsh PJ. J. Am. Chem. Soc. 2015; 137: 13887
    • 9h Gelat F, Lohier JF, Gaumont AC, Perrio S. Adv. Synth. Catal. 2015; 357: 2011
    • 9i Jia T, Bellomo A, Montel S, Zhang M, Baina KE, Zheng B, Walsh PJ. Angew. Chem. Int. Ed. 2014; 53: 260
    • 9j Jia T, Bellomo A, Baina KE, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2013; 135: 3740
    • 9k Izquierdo F, Chartoire A, Nolan SP. ACS Catal. 2013; 3: 2190
    • 9l Maitro G, Prestat G, Madec D, Poli G. Tetrahedron: Asymmetry 2010; 21: 1075
    • 9m Bernoud E, Duc GL, Bantreil X, Prestat G, Madec D, Poli G. Org. Lett. 2010; 12: 320
    • 9n Maitro G, Vogel S, Sadaoui M, Prestat G, Madec D, Poli G. Org. Lett. 2007; 9: 5493
    • 9o Colobert F, Ballesteros-Garrido R, Leroux FR, Ballesteros R, Abarca B. Tetrahedron Lett. 2007; 48: 6896
    • 9p Maitro G, Vogel S, Prestat G, Madec D, Poli G. Org. Lett. 2006; 8: 5951
    • 9q Maitro G, Prestat G, Madec D, Poli G. J. Org. Chem. 2006; 71: 7449
    • 10a Wang L, Chena M, Zhang J. Org. Chem. Front. 2019; 6: 32
    • 10b Amos SG. E, Nicolai S, Gagnebin A, Vaillant FL, Waser J. J. Org. Chem. 2019; 84: 3687
    • 10c Yu H, Li Z, Bolm C. Org. Lett. 2018; 20: 7104
    • 10d Lenstra DC, Vedovato V, Flegeau EF, Maydom J, Willis MC. Org. Lett. 2016; 18: 2086
    • 10e Wei J, Sun Z. Org. Lett. 2015; 17: 5396
    • 10f Zong L, Ban X, Kee CW, Tan CH. Angew. Chem. Int. Ed. 2014; 53: 11849
    • 10g Gillis HM, Greene L, Thompson A. Synlett 2009; 112
    • 11a Shi W, Miao T, Li Y, Li P, Wang L. Org. Lett. 2018; 20: 4416
    • 11b Miao T, Li P, Zhang Y, Wang L. Org. Lett. 2015; 17: 832
    • 12a Nguyen NL. T, Vo HT, Duus F, Luu TX. T. Molecules 2017; 22: 1458
    • 12b Yuste F, Linares AH, Mastranzo VM, Ortiz B, Sánchez-Obregón R, Fraile A, Ruano JL. G. J. Org. Chem. 2011; 76: 4635
    • 13a Ji YZ, Zhang JY, Li HJ, Han C, Yang YK, Wu YC. Org. Biomol. Chem. 2019; 17: 4789
    • 13b Meyer AU, Wimmer A, König B. Angew. Chem. Int. Ed. 2017; 56: 409
    • 14a Zhu J, Yang W, Wang X, Wu L. Adv. Synth. Catal. 2018; 360: 386
    • 14b Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 1371
    • 14c Dong DQ, Hao SH, Yang DS, Li LX, Wang ZL. Eur. J. Org. Chem. 2017; 6576
    • 14d Rahaman R, Barman P. Eur. J. Org. Chem. 2017; 6327
    • 15a Ji YZ, Li HJ, Zhang JY, Wu YC. Eur. J. Org. Chem. 2019; 1846
    • 15b Ji YZ, Li HJ, Zhang JY, Wu YC. Chem. Commun. 2019; 55: 11864
    • 16a Hostier T, Ferey V, Ricci G, Pardo DG, Cossy J. Chem. Commun. 2015; 51: 13898
    • 16b Carson JR, Davis NM. J. Org. Chem. 1981; 46: 839
    • 16c Carmona O, Greenhouse R, Landeros R, Muchowski JM. J. Org. Chem. 1980; 45: 5336
  • 17 General Procedure for the Preparation of Sulfoxides 4 The mixture of sodium arylsulfinate (0.2 mmol, 1.0 equiv), pyrrole/thiophenes (0.3 mmol, 1.5 equiv), and TMSOTf (0.4 mmol, 2.0 equiv) in (ClCH2)2 (1.0 mL) was stirred at 25 °C for 0.5 h. After completion of the reaction, water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (ethyl acetate–petroleum ether = 1:1) to afford the desired sulfoxides 4. Compound 4a: white solid, mp 84–86 °C; 36.3 mg, 83% yield. 1H NMR (400 MHz, CDCl3): δ = 7.53 (d, J = 8.2 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 6.95 (t, J = 2.0 Hz, 1 H), 6.58 (t, J = 2.5 Hz, 1 H), 6.16 (dd, J = 3.0, 1.7 Hz, 1 H), 3.64 (s, 3 H), 2.39 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 141.9, 140.3, 129.3, 126.8, 124.5, 124.3, 123.9, 107.4, 36.4, 21.2. Data are in accordance to those previously reported.13a General Procedure for the Preparation of Sulfoxides 10 The mixture of sodium arylsulfinate (0.2 mmol, 1.0 equiv), indole (0.4 mmol, 2.0 equiv), and TMSOTf (0.4 mmol, 2.0 equiv) in (ClCH2)2 (1.0 mL) was stirred at 25 °C for 0.5 h. After completion of the reaction, water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (ethyl acetate–petroleum ether = 1:1) to afford the desired sulfoxides 10. Compound 10a: white solid, mp 138–139 °C; 42.0 mg, 78% yield. 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 8.2 Hz, 2 H), 7.48 (d, J = 8.7 Hz, 2 H),7.34–7.24 (m, 4 H), 7.12–7.08 (m, 1 H), 3.79 (s, 3 H), 2.40 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 140.9, 140.3, 137.6, 132.5, 129.5, 124.8, 124.3, 123.2, 121.3, 119.8, 116.5, 110.0, 33.2, 21.2. Data are in accordance to those previously reported.13a General Procedure for the Preparation of Sulfoxides 12 The mixture of sodium arylsulfinate (0.2 mmol, 1.0 equiv), arene (0.4 mmol, 2.0 equiv), and TMSOTf (0.4 mmol, 2.0 equiv) in (ClCH2)2 (1.0 mL) was stirred at 25 °C for 1 h. After completion of the reaction, water (5 mL) and dichloromethane (10 mL) were added. The two layers were separated, and the aqueous phase was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed by brine, dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (ethyl acetate–petroleum ether = 1:1) to afford the desired sulfoxides 12. Compound 12a: colorless oil, 27.0 mg, 55% yield. 1H NMR (400 MHz, CDCl3): δ = 7.55 (d, J = 8.8 Hz, 2 H), 7.49 (d, J = 8.1 Hz, 2 H), 7.25 (d, J = 7.3 Hz, 2 H), 6.95 (d, J = 8.8 Hz, 2 H), 3.81 (s, 3 H), 2.36 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 161.8, 142.5, 141.2, 136.9, 129.8, 127.0, 124.7, 114.7, 55.4, 21.3. Data are in accordance to those previously reported.11a