Synlett 2020; 31(04): 343-348
DOI: 10.1055/s-0039-1691562
letter
© Georg Thieme Verlag Stuttgart · New York

Three Ways Aliphatic Aldehydes React with Nonstabilized Azomethine Ylides

Evgeniya V. Gorbunova
,
Evgeny M. Buev
,
Vladimir S. Moshkin
,
Vyacheslav Y. Sosnovskikh
This work was financially supported by the Russian Science Foundation (Grant 17-73-20070).
Further Information

Publication History

Received: 19 November 2019

Accepted after revision: 15.12.20109

Publication Date:
03 January 2020 (online)


Abstract

Aliphatic aldehydes readily react with nonstabilized azomethine ylides in one of the three ways to give oxazolidines, pyrrolidines, or Mannich bases, depending on the structure of the starting compound and the reaction conditions. The use of N-(methoxymethyl)-N-[(trimethylsilyl)methyl]benzylamine in DMF provided 5-alkyloxazolidines in 40–97% yields. On the other hand, three-component reactions of aliphatic aldehydes bearing one α-hydrogen with N-methyl(benzyl)glycine and formaldehyde gives Mannich bases in yields of 47–98%. A similar reaction of aldehydes bearing branched alkyl groups and two hydrogen atoms at the α-position proceeds as a domino process that gives 3-alkyl-3-formylpyrrolidines in yields of 34–93%.

Supporting Information

 
  • References and Notes

    • 1a Rizzi GP. J. Org. Chem. 1970; 35: 2069
    • 1b Grigg R, Aly MF, Sridharan V, Thianpatanagul S. J. Chem. Soc., Chem. Commun. 1984; 182
    • 1c Tsuge O, Kanemasa S, Ohe M, Takenaka S. Chem. Lett. 1986; 973
    • 1d Orsini F, Pelizzoni F, Forte M, Destro R, Gariboldi P. Tetrahedron 1988; 44: 519
    • 2a Tsuge O, Kanemasa S. Adv. Heterocycl. Chem. 1989; 45: 231
    • 2b Harwood LM, Vickers RJ. In Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Chemistry of Heterocyclic Compounds, Vol. 59. Padwa A, Pearson WH. Wiley; Chichester: 2002
    • 2c Nájera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105
    • 2d Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 2e Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 3a Padwa A, Dent W. J. Org. Chem. 1987; 52: 235
    • 3b Chastanet J, Roussi G. J. Org. Chem. 1988; 53: 3808
    • 3c Izquierdo C, Esteban F, Ruano JL. G, Fraile A, Alemán J. Org. Lett. 2016; 18: 92
    • 3d Laha JK, Jethava KP, Tummalapalli KS. S, Sharma S. Eur. J. Org. Chem. 2017; 4617
    • 3e Beuvin M, Manneveau M, Diab S, Picard B, Sanselme M, Piettre SR, Legros J, Chataigner I. Tetrahedron Lett. 2018; 59: 4487
    • 3f Gorbunova EV, Buev EM, Moshkin VS, Sosnovskikh VY. Mendeleev Commun. 2019; 29: 145
    • 3g Buev EM, Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2019; 60: 773
    • 4a Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2006; 2873
    • 4b Nyerges M, Tóth J, Groundwater PW. Synlett 2008; 1269
    • 4c Zhang C, De CK, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
    • 4d Zheng L, Yang F, Dang Q, Bai X. Org. Lett. 2008; 10: 889
    • 4e Bi H.-P, Zhao L, Liang Y.-M, Li C.-J. Angew. Chem. Int. Ed. 2009; 48: 792
    • 4f Anaç O, Güngör F. Ş. Tetrahedron 2010; 66: 5931
    • 4g Deb I, Seidel D. Tetrahedron Lett. 2010; 51: 2945
    • 4h D’Souza AM, Spiccia N, Basutto J, Jokisz P, Wong LS.-M, Meyer AG, Holmes AB, White JM, Ryan JH. Org. Lett. 2011; 13: 486
    • 4i Yang D, Zhao D, Mao L, Wang L, Wang R. J. Org. Chem. 2011; 76: 6426
    • 4j Chen W, Wilde RG, Seidel D. Org. Lett. 2014; 16: 730
    • 4k Buev EM, Moshkin VS, Sosnovskikh VY. J. Org. Chem. 2017; 82: 12827
    • 4l Zhu Z, Seidel D. Org. Lett. 2017; 19: 2841
    • 4m Buev EM, Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2018; 59: 3409

      Selected reviews:
    • 5a Ryan JH. ARKIVOC 2015; (i): 160
    • 5b Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 5c Singh MS, Chowdhury S, Koley S. Tetrahedron 2016; 72: 1603
    • 5d Meyer AG, Ryan JH. Molecules 2016; 21: 935
  • 6 Nyerges M, Fejes I, Virányi A, Groundwater PW, Töke L. Synthesis 2001; 1479
  • 7 Ryan JH, Spiccia N, Wong LS.-M, Holmes AB. Aust. J. Chem. 2007; 60: 898
  • 8 Katritzky AR, Feng D, Qi M. Tetrahedron Lett. 1998; 39: 6835
    • 9a Grigg R, Idle J, McMeekin P, Vipond D. J. Chem. Soc., Chem. Commun. 1987; 49
    • 9b Tsuge O, Kanemasa S, Ohe M, Takenaka S. Bull. Chem. Soc. Jpn. 1987; 60: 4079
    • 9c Grigg R, Idle J, McMeekin P, Surendrakumar S, Vipond D. J. Chem. Soc., Perkin Trans. 1 1988; 2703
    • 9d Častulík J, Marek J, Mazal C. Tetrahedron 2001; 57: 8339
    • 10a Joucla M, Mortier J, Bureau R. Tetrahedron Lett. 1987; 28: 2975
    • 10b Buev EM, Moshkin VS, Sosnovskikh VY. Org. Lett. 2016; 18: 1764
    • 11a Beugelmans R, Negron G, Roussi G. J. Chem. Soc., Chem. Commun. 1983; 31
    • 11b Chastanet J, Roussi G. Heterocycles 1985; 23: 653
    • 11c Beugelmans R, Benadjila-Iguertsira L, Chastanet J, Negron G, Roussi G. Can. J. Chem. 1985; 63: 725
    • 11d Davoren JE, Gray DL, Harris AR, Nason DM, Xu W. Synlett 2010; 2490
    • 11e Mirzayans PM, Krenske EH, Williams CM. Aust. J. Chem. 2014; 67: 1309
    • 12a Vedejs E, Martinez GR. J. Am. Chem. Soc. 1979; 101: 6452
    • 12b Terao Y, Kotaki H, Imai N, Achiwa K. Chem. Pharm. Bull. 1985; 33: 896
    • 12c Vedejs E, West FG. Chem. Rev. 1986; 86: 941
    • 12d Tsuge O, Kanemasa S, Hatada A, Matsuda K. Bull. Chem. Soc. Jpn. 1986; 59: 2537
    • 12e Chen S, Bacauanu V, Knecht T, Mercado BQ, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2016; 138: 12664
    • 13a Sosnovskikh VY, Kornev MY, Moshkin VS, Buev EM. Tetrahedron 2014; 70: 9253
    • 13b Buev EM, Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2015; 56: 6590
  • 14 Hon Y.-S, Lee C.-F. Tetrahedron 2001; 57: 6181
  • 15 Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2013; 54: 5869
  • 16 Korotaev VY, Barkov AY, Moshkin VS, Matochkina EG, Kodess MI, Sosnovskikh VY. Tetrahedron 2013; 69: 8602
  • 17 3-Alkylpyrrolidine-3-carbaldehydes 14ac; General Procedure Finely ground sarcosine 11 (4.6 mmol), paraformaldehyde (180 mg, 6.0 mmol of HCHO), BzOH (122 mg, 1 mmol), anhyd benzene (12 mL), and the appropriate aldehyde 5 (2 mmol) were sequentially added to a 25 mL round-bottomed flask fitted with a Dean–Stark trap and equipped with a magnetic stirring bar. The resulting mixture was refluxed for 3 h, then cooled to rt, and any solid that formed was filtered off. The solution was extracted with cold aq 0.46 M HCl (6.9 mmol, 15 mL). The aqueous phase was washed with Et2O (8 mL) and basified with NaHCO3 to pH 8–9. Brine (10 mL) was added, and the resulting solution was extracted with Et2O (3 × 10 mL). The combined organic layers were washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo without heating to give the desired 3-alkylpyrrolidine-3-carbaldehydes 14ac, which were purified by column chromatography, if necessary.
  • 18 3-Isopropyl-1-methylpyrrolidine-3-carbaldehyde (14a) Light-yellow oil; yield: 289 mg (93%). 1H NMR (500 MHz, CDCl3): δ = 9.60 (s, 1 H, CHO), 3.03 (d, J = 9.6 Hz, 1 H, 2-CHH), 2.71 (td, J = 8.3, 5.0 Hz, 1 H, 5-CHH), 2.35–2.30 (m, 1 H), 2.31 (s, 3 H, CH3N), 2.28 (d, J = 9.6 Hz, 1 H, 2-CHH), 2.25–2.15 (m, 1 H), 1.96 (dt, J = 13.5, 7.1 Hz, 1 H, 4-CHH), 1.70 (ddd, J = 13.5, 8.1, 5.0 Hz, 1 H, 4-CHH), 0.95 (d, J = 6.9 Hz, 3 H, CH3), 0.94 (d, J = 6.9 Hz, 3 H, CH3). 13C NMR (125 MHz, CDCl3): δ = 203.1 (CHO), 61.2 (CH2N), 57.8 (3-C), 54.9 (CH2N), 41.5 (CH3N), 32.8 (CH), 30.0 (CH2), 18.4 (CH3), 18.3 (CH3). HRMS (ESI): m/z [M + H]+ calcd for C9H18NO: 156.1383; found: 156.1381.
  • 19 Erkkilä A, Pihko PM. Eur. J. Org. Chem. 2007; 4205
    • 20a Yan L, Hale JJ, Lynch CL, Budhu R, Gentry A, Mills SG, Hajdu R, Keohane CA, Rosenbach MJ, Milligan JA, Shei G.-J, Chrebet G, Bergstrom J, Card D, Rosen H, Mandala SM. Bioorg. Med. Chem. Lett. 2004; 14: 4861
    • 20b Fish PV, Andrews MD, Fray MJ, Stobie A, Wakenhut F, Whitlock GA. Bioorg. Med. Chem. Lett. 2009; 19: 2829
    • 20c Gigante F, Kaiser M, Brun R, Gilbert IH. Bioorg. Med. Chem. 2010; 18: 7291
    • 20d Van Orden LJ, Van Dyke PM, Saito DR, Church TJ, Chang R, Smith JA. M, Martin WJ, Jaw-Tsai S, Stangeland EL. Bioorg. Med. Chem. Lett. 2013; 23: 1456