Subscribe to RSS
DOI: 10.1055/s-0039-1691525
Construction of C–C Bond via C–N and C–O Cleavage
National Natural Science Foundation of China (Grant No. 21772072 and 21502078).Publication History
Received: 31 October 2019
Accepted after revision: 15 November 2019
Publication Date:
04 December 2019 (online)
Abstract
The construction of a C–C bond is a center subject in synthetic organic chemistry. The cross-electrophile coupling has provided a powerful tool to forge the C–C bond. However, this process generally requires organic halides, which has severely restricted the design space for new reactions. Herein, we highlight our recent work on the coupling reaction between C–N and C–O electrophiles. This work demonstrates the possibility of construction of C–C bond via C–N and C–O cleavage. A number of reactions between benzyl ammoniums and vinyl acetates, aryl ammoniums and vinyl acetates, and benzyl ammoniums and aryl C–O electrophiles have been studied. We also disclosed that benzyl ammonium salts can be activated by low-valent nickel to be radicals.
1 Introduction
2 Cross-Coupling of C–N and C–O Electrophiles
3 Summary and Outlook
-
References
- 1 Metal-Catalyzed Cross-Coupling Reactions. Diederich F, Stang PG. Wiley-VCH; New York: 1998
- 2a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 2b Moragas T, Correa A, Martin R. Chem. Eur. J. 2014; 20: 8242
- 2c Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 2d Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
- 2e Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 0065
- 2f Richmond E, Moran J. Synthesis 2018; 50: 499
- 3a Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
- 3b Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
- 3c Yin H, Zhao C, You H, Lin K, Gong H. Chem. Commun. 2012; 48: 7034
- 4 He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481
- 5a Yu D.-G, Li B.-J, Shi Z.-J. Acc. Chem. Res. 2010; 43: 1486
- 5b Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
- 5c Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
- 5d Tollefson EJ, Hanna LE, Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
- 5e Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
- 5f Tobisu M, Chatani N. Top. Curr. Chem. 2016; 374: 41
- 5g Zhang Y.-F, Shi Z.-J. Acc. Chem. Res. 2019; 52: 161
- 6a Gärtner D, Stein AL, Grupe S, Arp J, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2015; 54: 10545
- 6b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 7a Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
- 7b Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
- 7c Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
- 7d Vara BA, Patel NR, Molander GA. ACS Catal. 2017; 7: 3955
- 7e Miao M, Liao L.-L, Gao G.-M, Zhou W.-J, Yu D.-G. Sci. China Chem. 2019; 62: 1519
- 8a Jia XG, Guo P, Duan J, Shu X.-Z. Chem. Sci. 2018; 9: 640
- 8b Yan XB, Li CL, Jin WJ, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
- 8c Tian Z.-X, Qiao J.-B, Xu G.-L, Pang X, Qi L, Ma W.-Y, Zhao Z.-Z, Duan J, Du Y.-F, Su P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 7637
- 8d Duan J, Du Y.-F, Pang X, Shu X.-Z. Chem. Sci. 2019; 10: 8706
- 8e Pan F.-F, Guo P, Li C.-L, Su P, Shu X.-Z. Org. Lett. 2019; 21: 3701
- 9 Amatore M, Gosmini C, Périchon J. Eur. J. Org. Chem. 2005; 989
- 10a Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 10b Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
- 11a Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
- 11b Zhang H, Hagihara S, Itami K. Chem. Eur. J. 2015; 21: 16796