Synlett 2020; 31(06): 600-604
DOI: 10.1055/s-0039-1690990
cluster
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of 2,3,6-Trisubstituted Piperidines via Baylis–Hillman Adducts and Lithium Amide through Domino Reaction

Mateo M. Salgado
,
,
Carlos T. Nieto
,
David Díez
,
Narciso M. Garrido
We are indebted to European Regional Development Fund (FEDER), Spanish Ministerio de Economía y Competitividad (MINECO) for its support (CTQ 2015-68175-R), Junta de Castilla y León (UIC 21), and the Universidad de Salamanca. A.M.C. thanks European Social Fund (FSE) and USAL for his grant.
Further Information

Publication History

Received: 31 July 2019

Accepted after revision: 05 September 2019

Publication Date:
24 September 2019 (online)


Published as part of the ISySyCat2019 Special Issue

Abstract

A convenient asymmetric synthesis of methyl (2S,3S,6R)-6-(4-fluorophenyl)-2-(4-hydroxyphenyl)-piperidine-3-carboxylate is described, starting from Baylis–Hillman adducts. The route involves a domino process: allylic acetate rearrangement, stereoselective Ireland–Claisen rearrangement and asymmetric Michael addition, which provides a δ-amino acid derivative with full stereochemical control. A subsequent chemoselective transformation of one of the side-chain groups allows an effective cyclization leading to biologically interesting polysubstituted piperidines in which the 2,6-aryl groups could be attached sequentially.

Supporting Information

 
  • References and Notes

    • 1a Mochizuki A, Nakamoto Y, Naito H, Uoto K, Ohta T. Bioorg. Med. Chem. Lett 2008; 18: 782
    • 1b Kasturi SP, Surarapu S, Uppalanchi S, Dwivedi S, Yogeeswari P, Sigalapalli DK, Bathini NB, Ethiraj KS, Anireddy JS. Eur. J. Med. Chem. 2018; 150: 39
    • 1c Reddy CR, Latha B, Warudikar K, Singarapu KK. Org. Biomol. Chem. 2016; 14: 251
    • 1d Reddy CR, Ramesh P, Latha B. Synlett 2017; 28: 481
    • 1e Li YJ, Hou CC, Chang KC. Eur. J. Org. Chem. 2015; 1659
    • 2a Ghorai MK, Halder S, Das RK. J. Org. Chem. 2010; 75: 7061
    • 2b Gautam LN, Su Y, Akhmedov NG, Petersen JL, Shi X. Org. Biomol. Chem. 2014; 12: 6384
  • 3 Aridoss G, Amirthaganesan S, Jeong YT. Bioorg. Med. Chem. Lett. 2010; 20: 2242
    • 4a Rameshkumar N, Veena A, Ilavarasan R, Adiraj M, Shanmugapandiyan P, Sridhar SK. Biol. Pharm. Bull. 2003; 26: 188
    • 4b Aridoss G, Amirthaganesan S, Kumar NA, Kim JT, Lim KT, Kabilan S, Jeong YT. Bioorg. Med. Chem. Lett. 2008; 18: 6542
    • 4c Anand PS, Sethukumar A, Kumar CU, Krishnasamy K, Senthan S, Manikandan G, Prakasam BA. Chem. Data Collect. 2019; 21: 100216
    • 4d Khan MM, Khan S, Iqbal S. RSC Adv. 2016; 6: 42045
    • 4e Lacharity JJ, Fournier J, Lu P, Mailyan AK, Herrmann AT, Zakarian A. J. Am. Chem. Soc. 2017; 139: 13272
  • 6 Tripathi P, Tripathi AC, Chawla V, Saraf SK. Eur. J. Med. Chem. 2014; 82: 439
    • 7a Rubia AG, Salgado MM, Nieto CT, Manchado A, Díez D, Sanz F, Garrido NM. Tetrahedron: Asymmetry 2017; 28: 1394
    • 7b Nieto CT, Gonzalez-Nunez V, Rodríguez RE, Diez D, Garrido NM. Eur. J. Med. Chem. 2015; 101: 150
    • 7c Garrido NM, Nieto CT, Díez D. Synlett 2013; 24: 169
    • 7d Garrido NM, Rubia AG, Nieto C, Díez D. Synlett 2010; 587
    • 7e Garrido NM, Díez D, Domínguez SH, García M, Sánchez MR, Davies SG. Tetrahedron: Asymmetry 2006; 17: 2183
    • 7f Urones JG, Garrido NM, Diez D, Dominguez SH, Davies SG. Tetrahedron: Asymmetry 1999; 10: 1637
    • 8a Garrido NM, Sánchez MR, Díez D, Sanz F, Urones JG. Tetrahedron: Asymmetry 2011; 22: 872
    • 8b Garrido NM, Garcia M, Sanchez MR, Diez D, Urones JG. Synlett 2010; 387
    • 8c Garrido NM, Garcia M, Diez D, Sanchez MR, Sanz F, Urones JG. Org. Lett. 2008; 10: 1687
  • 9 Mason PH, Emslie ND. Tetrahedron 1994; 50: 12001
    • 10a Davies SG, Smith AD, Price PD. Tetrahedron: Asymmetry 2005; 16: 2833
    • 10b Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron: Asymmetry 2012; 23: 1111
    • 10c Davies SG, Fletcher AM, Roberts PM, Thomson JE. Tetrahedron: Asymmetry 2017; 28: 1842
    • 11a Yu K, Lu P, Jackson JJ, Nguyen T.-AD, Alvarado J, Stivala CE, Ma Y, Mack KA, Hayton TW, Collum DB. J. Am. Chem. Soc. 2016; 139: 527
    • 11b Ma Y, Mack KA, Liang J, Keresztes I, Collum DB, Zakarian A. Angew. Chem. Int. Ed. 2016; 55: 10093
    • 11c Lu P, Jackson JJ, Eickhoff JA, Zakarian A. J. Am. Chem. Soc. 2015; 137: 656
  • 12 Compounds 9 and 10; Typical Procedure To a solution of 7 (0.16 g/mL, 0.25 mmol) in acetic acid were added Pd/C 30% (28 mg, 0.028 g/mL) and ammonium formate (0.015 g/mL, 0.42 mmol). The reaction was stirred for 8 h at 50 °C. After being cooled, the reaction mixture was filtered through celite and washed with MeOH. The solvent was evaporated and the resulting mixture was purified by chromatography and 9 and 10 were eluted with hexane/EtOAc 9:1. Compound 9: yellowish solid; yield: 49 mg (60%). IR (layer): 538, 833, 1094, 1157, 1169, 1223, 1265, 1368, 1437, 1510, 1599, 1614, 1717, 1732, 2949, 3397 cm–1. 1H NMR (200 MHz, CDCl3): δ = 7.37 (dd, J = 5.6, 8.5 Hz, 2 H, H-3′′), 7.21 (d, J = 8.5 Hz, 2 H, H-2′), 6.97 (t, J = 8.7 Hz, 2 H, H-2′′), 6.59 (d, J = 8.4 Hz, 2 H, H-3′), 3.94 (d, J = 10.2 Hz, 1 H, H-2), 3.85 (dd, J = 2.4, 11.3 Hz, 1 H, H-6), 3.49 (s, 3 H, COOMe), 2.71 (ddd, J = 3.8, 10.2, 12.3 Hz, 1 H, H-3), 2.17 (dt, J = 3.5, 10.6 Hz, 1 H), 1.88 (ddt, J = 3.7, 6.6, 12.6 Hz, 2 H, H-4A), 1.62 (dq, J = 4.0, 13.8 Hz, 1 H, 4B). 13C NMR (50 MHz, CDCl3): δ = 175.57 (C, COOMe), 164.66 (C, d, J = 241.5 Hz, C-4′′), 156.09 (C, C-4′), 140.13 (C-d, J C-F = 8.05 Hz, C-2′′), 133.26 (C, C-1′), 128.86 (CH, Ar), 128.61 (CH, Ar), 128.45 (CH, Ar), 115.40 (CH d, J C-F = 21.5 Hz, C-3′′), 115.21 (CH, C-3′), 63.88 (CH, C-6), 61.71 (CH, C-2), 51.94 (CH3, COOMe), 49.88 (CH, C-3), 33.47 (CH2, C-5), 29.50 (CH2, C-4). HRMS–FAB: m/z [M + H]+ calcd for C19H21NO3F: 330.1497; found: 330.1500. Compound 10: yellowish solid; yield: 16 mg (20%). IR (layer): 538, 833, 1094, 1157, 1169, 1223, 1265, 1366, 1440, 1512, 1599, 1614, 1718, 1732, 2949, 3397 cm–1. 1H NMR (200 MHz, CDCl3): δ = 7.40 (m, 2 H, H-3′′, H-5′′), 7.05 (m, 4 H, H-2′, H-2′′, H-6′, H-6′′), 6.60 (m, 2 H, H-3′, H-5′), 4.07 (broad s, 1 H, H-2), 3.85 (dd, J = 4.2 and 10.6 Hz, 1 H, H-6), 3.48 (s, 3 H, COOMe), 2.92 (br s, 1 H, H-3), 2.23 (d, J = 8.0 Hz, 1 H, H-4a), 2.03 (m, 2 H, H-5), 1.74 (d, J = 8.0 Hz, 1 H, H-4b). 13C NMR (50 MHz, CDCl3): δ = 174.47 (C, COOMe), 162,22 (C, d, J = 243.5 Hz, C-4′′) 155.30 (C, C-4′), 139.99 (C, C-1′′), 133.30 (C, C-1′), 128.85 (CH, Ar), 128.65 (CH, Ar), 128.49 (CH, Ar), 115.60 (CH d, J C-F = 21.5 Hz, C-3′′), 115.26 (CH, C-3′), 61.70 (CH, C-2), 61.09 (CH, C-6), 51.50 (CH3, COOMe), 44.24 (CH, C-3), 29.02 (CH2, C-5), 28.20 (CH2, C-4). HRMS–FAB: m/z [M + H]+ calcd for C19H21NO3F: 330.1505; found: 330.1500.
    • 13a Johnson F. Chem. Rev. 1968; 68: 375
    • 13b Scott JW, Durham LJ, De Jongh HA. P, Burckhardt V, Johnson WS. Tetrahedron Lett. 1967; 8: 2381
    • 13c Chow YL, Colon CJ, Tam JN. S. Can. J. Chem. 1968; 46: 2821
    • 13d Fraser RR, Grindley TB. Tetrahedron Lett. 1974; 15: 4169
    • 13e Quick J, Modello C, Humora M, Brennan T. J. Org. Chem. 1978; 43: 2705
    • 13f Beak P, Zajdel WJ. J. Am. Chem. Soc. 1984; 106: 1010