Synthesis 2019; 51(23): 4425-4433
DOI: 10.1055/s-0039-1690984
paper
© Georg Thieme Verlag Stuttgart · New York

Nitroacenaphthene as a New Photocatalyst for the Synthesis of Sulfonyl Amidines

Yong Jian
a   State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. of China   Email: xyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
Ming Chen
b   School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P. R. of China
,
Chao Yang
a   State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. of China   Email: xyang@hit.edu.cn   Email: xiawj@hit.edu.cn
,
Wujiong Xia
a   State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. of China   Email: xyang@hit.edu.cn   Email: xiawj@hit.edu.cn
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (No. 21672047), State Key Laboratory of Urban Water Resource and Environment (SKLUWRE, No. 2018DX02) and the Science and Technology Planning Project of Shenzhen Municipality (No. JCYJ20180306172044124).
Further Information

Publication History

Received: 18 July 2019

Accepted after revision: 20 August 2019

Publication Date:
13 September 2019 (online)


Abstract

A small molecule, namely nitroacenaphthene, is reported for the first time as a recyclable visible-light photocatalyst for the construction of the C=N bond from sulfonyl azides and amines. This scalable, site-selective protocol provides a convenient way to access various sulfonyl amidines under mild conditions. Two reaction pathways are proposed, according to different transformation patterns.

Supporting Information

 
  • References

    • 1a Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 1b Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
    • 1c Karkas MD, Porco JA. Jr, Stephenson CR. Chem. Rev. 2016; 116: 9683
    • 1d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 1e Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 1f Ghosh I, Marzo L, Das A, Shaikh R, Konig B. Acc. Chem. Res. 2016; 49: 1566
    • 1g Zhao YT, Xia WJ. Chem. Soc. Rev. 2018; 47: 2591
    • 2a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2b Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
    • 2c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 2d Zhang LL, Meggers E. Acc. Chem. Res. 2017; 50: 320
    • 2e Wang CS, Dixneuf PH, Soule JF. Chem. Rev. 2018; 118: 7532
    • 3a Choi WJ, Choi S, Ohkubo K, Fukuzumi S, Cho EJ, You Y. Chem. Sci. 2015; 6: 1454
    • 3b Shiba Y, Inagaki A, Akita M. Organometallics 2015; 34: 4844
    • 4a Matsuno T, Isobe H, Reiser O. Chem. Eur. J. 2012; 18: 7336
    • 4b Tang XJ, Dolbier WR. Angew. Chem. Int. Ed. 2015; 54: 4246
    • 4c Fumagalli G, Rabet PT. G, Boyd S, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
    • 4d Hernandez-Perez AC, Collins SK. Acc. Chem. Res. 2016; 49: 1557
    • 4e Pirtsch M, Paria S, Rabet PT. G, Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2016; 18: 1646
    • 5a Witzel S, Xie J, Rudolph M, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 1522
    • 5b Banerjee S, Senthilkumar B, Patil NT. Org. Lett. 2019; 21: 180
    • 6a Higgins RF, Fatur SM, Shepard SG, Stevenson SM, Boston DJ, Ferreira EM, Damrauer NH, Rappe AK, Shores MP. J. Am. Chem. Soc. 2016; 138: 5451
    • 6b Spackova J, Svobodova E, Hartman T, Stibor I, Kopecka J, Cibulkova J, Chudoba J, Cibulka R. ChemCatChem 2017; 9: 1177
    • 6c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
    • 6d Cao X, Chen Z, Lin R, Cheong WC, Liu SJ, Zhang J, Peng Q, Chen C, Han T, Tong XJ, Wang Y, Shen RG, Zhu W, Wang DS, Li YD. Nat. Catal. 2018; 1: 704
    • 7a Anderson PA, Anderson RF, Furue M, Junk PC, Keene FR, Patterson BT, Yeomans BD. Inorg. Chem. 2000; 39: 2721
    • 7b Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME. J. Am. Chem. Soc. 2003; 125: 7377
    • 7c Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J. Organomet. Chem. 2015; 776: 51
    • 7d Schultz DM, Sawicki JW, Yoon TP. Beilstein J. Org. Chem. 2015; 11: 61
    • 7e Monos TM, Sun AC, McAtee RC, Devery JJ, Stephenson CR. J. J. Org. Chem. 2016; 81: 6988
    • 8a Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 8b Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 8c Marin ML, Santos-Juanes L, Arques A, Amat AM, Miranda MA. Chem. Rev. 2012; 112: 1710
    • 8d Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
    • 8e Majek M, Jacobi von Wangelin A. Acc. Chem. Res. 2016; 49: 2316
    • 8f Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 9a McTiernan CD, Pitre SP, Scaiano JC. ACS Catal. 2014; 4: 4034
    • 9b Luo J, Zhang J. ACS Catal. 2016; 6: 873
    • 9c Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
    • 9d Kim I, Min M, Kang D, Kim K, Hong S. Org. Lett. 2017; 19: 1394
    • 9e Chen YY, Lu P, Wang YG. Org. Lett. 2019; 21: 2130
    • 10a Wei G, Zhang CH, Bures F, Ye XY, Tan CH, Jiang ZY. ACS Catal. 2016; 6: 3708
    • 10b Lin L, Bai XB, Ye XY, Zhao XW, Tan CH, Jiang ZY. Angew. Chem. Int. Ed. 2017; 56: 13842
    • 10c Liu XY, Liu Y, Chai GB, Qiao BK, Zhao XW, Jiang ZY. Org. Lett. 2018; 20: 6298
    • 10d Yin YL, Dai YT, Jia HS, Li JT, Bu LW, Qiao BK, Zhao XW, Jiang ZY. J. Am. Chem. Soc. 2018; 140: 6083
    • 10e Li JT, Kong MM, Qiao BK, Lee R, Zhao XW, Jiang ZY. Nat. Commun. 2018; 9: 2445 ; DOI: 10.1038/s41467-018-04885-3
    • 11a Li Z, Zhang WF, Zhao QS, Gu HY, Li Y, Zhang GL, Zhang FB, Fan XB. ACS Sustainable Chem. Eng. 2015; 3: 468
    • 11b Zhang T, Liang WW, Huang YX, Li XR, Liu YZ, Yang B, He CX, Zhou XC, Zhang JM. Chem. Commun. 2017; 53: 12536
    • 11c Li XR, Li YY, Huang YX, Zhang T, Liu YZ, Yang B, He CX, Zhou XC, Zhang JM. Green Chem. 2017; 19: 2925
    • 11d Huang YX, Xin Z, Yao WL, Hu Q, Li ZH, Xiao LQ, Yang B, Zhang JM. Chem. Commun. 2018; 54: 13587
    • 11e Xiao LQ, Huang YX, Luo Y, Yang B, Liu YZ, Zhou XC, Zhang JM. ACS Sustainable Chem. Eng. 2018; 6: 14759
  • 12 Gui J, Xie HS, Jiang HF, Zeng W. Org. Lett. 2019; 21: 2804
    • 13a Xu XL, Li XN, Ma L, Ye N, Weng BJ. J. Am. Chem. Soc. 2008; 130: 14048
    • 13b Zhang L, Su JH, Wang SJ, Wan CF, Zha ZG, Du JF, Wang ZY. Chem. Commun. 2011; 47: 5488
    • 13c Xu XL, Ge ZC, Cheng DP, Ma L, Lu CS, Zhang QF, Yao N, Li XN. Org. Lett. 2010; 12: 897
    • 13d Chow SY, Odell LR. J. Org. Chem. 2017; 82: 2515
    • 13e Rouzi A, Hudabaierdi R, Wusiman A. Tetrahedron 2018; 74: 2475
    • 13f Chen J, Guo YP, Sun MH, Fan GT, Zhou L. Chem. Commun. 2014; 50: 12367
    • 13g Wang SJ, Wang ZY, Zheng XQ. Chem. Commun. 2009; 7372
    • 14a Zhao YT, Huang BB, Yang C, Li B, Gou BQ, Xia WJ. ACS Catal. 2017; 7: 2446
    • 14b Chen M, Zhao XX, Yang C, Xia WJ. Org. Lett. 2017; 19: 3807
    • 14c Gao GL, Yang C, Xia WJ. Chem. Commun. 2017; 53: 1041
    • 14d Jian Y, Chen M, Huang BB, Jia W, Yang C, Xia WJ. Org. Lett. 2018; 20: 5370
    • 15a Johnsson N, Johnsson K. ACS Chem. Biol. 2007; 2: 31
    • 15b Lavis LD, Raines RT. ACS Chem. Biol. 2008; 3: 142
    • 15c Zheng Y, Ji S, Czerwinski A, Valenzuela F, Pennington M, Liu S. Bioconjugate Chem. 2014; 25: 1925
    • 15d Daly S, Kulesza A, Knight G, MacAleese L, Antoine R, Dugourd P. J. Phys. Chem. A 2016; 120: 3484
    • 16a Xiao P, Dumur F, Graff B, Gigmes D, Fouassier JP, Lalevee J. Macromolecules 2014; 47: 601
    • 16b Zhang J, Dumur F, Xiao P, Graff B, Bardelang D, Gigmes D, Fouassier JP, Lalevee J. Macromolecules 2015; 48: 2054
    • 16c Meka RK, Heagy MD. J. Org. Chem. 2017; 82: 12153
    • 16d Zhang WQ, Xu YW, Hanif M, Zhang ST, Zhou JD, Hu DH, Xie ZQ, Ma YG. J. Phys. Chem. C 2017; 121: 23218
  • 17 See the Supporting Information.
  • 18 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 19 Adeli Y, Huang KM, Liang YJ, Jiang YY, Liu JZ, Song S, Zeng CC, Jiao N. ACS Catal. 2019; 9: 2063
  • 20 de Nanteuil F, Waser J. Angew. Chem. Int. Ed. 2011; 50: 12075