Synlett 2020; 31(09): 845-855
DOI: 10.1055/s-0039-1690827
account
© Georg Thieme Verlag Stuttgart · New York

Iodine-Based Reagents in Oxidative Amination and Oxygenation

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
› Author Affiliations
We thank the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers 19H02716 and 18K14217) for financial support.
Further Information

Publication History

Received: 23 December 2019

Accepted after revision: 27 January 2020

Publication Date:
26 February 2020 (online)


Abstract

In this Account, we provide an overview of our recent advances in oxidative transformations that enable the introduction of nitrogen and oxygen functionalities into organic molecules by taking advantage of the unique characteristics of iodine-based reagents, such as hypervalency, soft Lewis acidity, high leaving ability, and radical reactivity. We also report on the development of new types of hypervalent iodine reagents containing a transferable nitrogen functional group with the objective of preparing primary amines, which is described in the latter part of this Account.

1 Introduction

2 Decarboxylative Functionalization of β,γ-Unsaturated Carboxylic Acids

3 Decarboxylative Functionalization at Tertiary Carbon Centers

4 C–H Bond Functionalization at Tertiary Carbon Centers

5 Intramolecular C–H Amination of Sulfamate Esters and N-Alkylsulfamides

6 Oxidative Amination with Hypervalent Iodine Reagents Containing Transferable Nitrogen Functional Groups

7 Summary and Outlook

 
  • References

  • 1 Aylward G, Findlay T. SI Chemical Data, 5th ed. John Wiley and Sons; New York: 2008
  • 2 Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. Wiley; Chichester: 2013
  • 3 Wirth T. Hypervalent Iodine Chemistry. In Topics in Current Chemistry, Vol. 373. Springer; 2016
  • 4 Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
  • 5 Haynes WM. CRC Handbook of Chemistry and Physics, 93rd ed. CRC Press; Boca Raton: 2012

    • For selected reviews, see:
    • 6a Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 6b Uyanik M, Ishihara K. ChemCatChem 2012; 4: 177
    • 6c Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769
    • 6d Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979
    • 6e Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
    • 6f Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
    • 6g Berthiol F. Synthesis 2015; 47: 587
    • 6h Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 6i Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
    • 6j Han Y.-C, Zhang C. Tetrahedron Lett. 2018; 59: 3052
    • 6k Claraz A, Masson G. Org. Biomol. Chem. 2018; 16: 5386
    • 6l Flores A, Cots E, Bergès J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
  • 7 Minakata S. Acc. Chem. Res. 2009; 42: 1172
    • 8a Minakata S, Morino Y, Oderaotoshi Y, Komatsu M. Chem. Commun. 2006; 3337
    • 8b Minakata S, Morino Y, Ide T, Oderaotoshi Y, Komatsu M. Chem. Commun. 2007; 3279
    • 8c Minakata S, Sasaki I, Ide T. Angew. Chem. Int. Ed. 2010; 49: 1309
    • 8d Minakata S, Okumura S, Nagamachi T, Takeda Y. Org. Lett. 2011; 13: 2966
    • 8e Takeda Y, Okumura S, Minakata S. Angew. Chem. Int. Ed. 2012; 51: 7804
  • 9 He Z, Hu M, Luo T, Li L, Hu J. Angew. Chem. Int. Ed. 2012; 51: 11545
  • 10 Kiyokawa K, Yahata S, Kojima T, Minakata S. Org. Lett. 2014; 16: 4646
  • 11 Muñiz K. Acc. Chem. Res. 2018; 51: 1507
    • 12a Zefirov NS, Safronov SO, Kaznacheev AA, Zhdankin VV. Z. Org. Khim. 1989; 25: 1807
    • 12b Lutz KE, Thomson RJ. Angew. Chem. Int. Ed. 2011; 50: 4437
    • 12c Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
  • 13 Singh FV, Rehbein J, Wirth T. ChemistryOpen 2012; 1: 245
  • 14 Kiyokawa K, Takemoto K, Yahata S, Kojima T, Minakata S. Synthesis 2017; 49: 2907
    • 15a Ando T, Kano D, Minakata S, Ryu I, Komatsu M. Tetrahedron 1998; 54: 13485
    • 15b Kano D, Minakata S, Komatsu M. J. Chem. Soc., Perkin Trans. 1 2001; 3186
    • 15c Minakata S, Kano D, Oderaotoshi Y, Komatsu M. Angew. Chem. Int. Ed. 2004; 43: 79
  • 16 Kiyokawa K, Kojima T, Hishikawa Y, Minakata S. Chem. Eur. J. 2015; 21: 15548
  • 17 Muñiz K, Bosnidou AE. Chem. Eur. J. 2019; 25: 13654
  • 18 Concepción JI, Francisco CG, Freire R, Hernández R, Salazar JA, Suárez E. J. Org. Chem. 1986; 51: 402
  • 19 An example of decarboxylative Ritter-type amination of an uronic acid, see: Francisco CG, González CC, Suárez E. Tetrahedron Lett. 1997; 38: 4141
  • 20 Kiyokawa K, Watanabe T, Fra L, Kojima T, Minakata S. J. Org. Chem. 2017; 82: 11711
    • 21a Clayden J, Donnard M, Lefranc J, Tetlow DJ. Chem. Commun. 2011; 47: 4624
    • 21b Zhou F, Liao F.-M, Yu J.-S, Zhou J. Synthesis 2014; 46: 2983
    • 21c Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Nat. Prod. Rep. 2016; 33: 491
  • 22 Kiyokawa K, Okumatsu D, Minakata S. Beilstein J. Org. Chem. 2018; 14: 1046
  • 23 Song H.-T, Ding W, Zhou Q.-Q, Liu J, Lu L.-Q, Xiao W.-J. J. Org. Chem. 2016; 81: 7250
  • 26 Sakaguchi S, Hirabayashi T, Ishii Y. Chem. Commun. 2002; 516
  • 27 Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
  • 28 Kiyokawa K, Takemoto K, Minakata S. Chem. Commun. 2016; 52: 13082
  • 29 Kiyokawa K, Ito R, Takemoto K, Minakata S. Chem. Commun. 2018; 54: 7609

    • For reviews, see:
    • 30a Shilov AE, Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 30b Herrerías CI, Yao X, Li Z, Li C.-J. Chem. Rev. 2007; 107: 2546
    • 30c Que LJr, Tolman WB. Nature 2008; 455: 333
    • 31a Brodsky BH, Du Bois J. J. Am. Chem. Soc. 2005; 127: 15391
    • 31b Pierce CJ, Hilinski MK. Org. Lett. 2014; 16: 6504
    • 31c Li X, Che X, Chen G.-H, Zhang J, Yan J.-L, Zhang Y.-F, Zhang L.-S, Hsu C.-P, Gao YQ, Shi Z.-J. Org. Lett. 2016; 18: 1234
    • 31d Lee M, Sanford MS. Org. Lett. 2017; 19: 572
    • 32a Mahmoodi NO, Jazayri M. Synth. Commun. 2001; 31: 1467
    • 32b Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y. Org. Lett. 2007; 9: 3129
    • 32c Zhang B, Han L, Li T, Yan J, Yang Z. Synth. Commun. 2014; 44: 1608
    • 32d Duhamel T, Muñiz K. Chem. Commun. 2019; 55: 933
    • 33a Fan R, Pu D, Wen F, Wu J. J. Org. Chem. 2007; 72: 8994
    • 33b Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 33c O’Broin CQ, Fernández P, Martínez C, Muñiz K. Org. Lett. 2016; 18: 436
    • 33d Wappes EA, Fosu SC, Chopko TC, Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
    • 33e Becker P, Duhamel T, Stein CJ, Reiher M, Muñiz K. Angew. Chem. Int. Ed. 2017; 56: 8004
  • 34 Kiyokawa K, Nakamura S, Jou K, Iwaida K, Minakata S. Chem. Commun. 2019; 55: 11782

    • For γ-C–H halogenation reactions of sulfamate esters, see:
    • 35a Roizen JL, Zalatan DN, Du Bois J. Angew. Chem. Int. Ed. 2013; 52: 11343
    • 35b Sathyamoorthi S, Banerjee S, Du Bois J, Burns NZ, Zare RN. Chem. Sci. 2018; 9: 100
    • 35c Del Castillo E, Martínez MD, Bosnidou AE, Duhamel T, O’Broin CQ, Zhang H, Escudero-Adán EC, Martínez-Belmonte M, Muñiz K. Chem. Eur. J. 2018; 24: 17225
  • 36 Short MA, Blackburn JM, Roizen JL. Synlett 2020; 31: 102
  • 37 Barton DH. R, Beckwith AL. J, Goosen A. J. Chem. Soc. 1965; 181
    • 38a Lamar AA, Nicholas KM. J. Org. Chem. 2010; 75: 7644
    • 38b Kiyokawa K, Kosaka T, Minakata S. Org. Lett. 2013; 15: 4858
    • 39a Kurokawa T, Kim M, Du Bois J. Angew. Chem. Int. Ed. 2009; 48: 2777
    • 39b Lu H, Jiang H, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2010; 49: 10192
  • 40 Duhamel T, Martínez MD, Sideri IK, Muñiz K. ACS Catal. 2019; 9: 7741
    • 41a Yamada Y, Yamamoto T, Okawara M. Chem. Lett. 1975; 361
    • 41b Macikenas D, Skrzypczak-Jankun E, Protasiewicz JD. J. Am. Chem. Soc. 1999; 121: 7164
    • 41c Yoshimura A, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2011; 17: 10538
    • 41d Kobayashi Y, Masakado S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 693
    • 42a Zhdankin VV, Kuehl CJ, Krasutsky AP, Formaneck MS, Bolz JT. Tetrahedron Lett. 1994; 35: 9677
    • 42b Akai S, Okuno T, Egi M, Takada T, Tohma H, Kita Y. Heterocycles 1996; 42: 47
    • 42c Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Bolz JT. J. Am. Chem. Soc. 1996; 118: 5192
    • 42d Alazet S, Preindl J, Simonet-Davin R, Nicolai S, Nanchen A, Meyer T, Waser J. J. Org. Chem. 2018; 83: 12334
    • 43a Wang H, Cheng Y, Becker P, Raabe G, Bolm C. Angew. Chem. Int. Ed. 2016; 55: 12655
    • 43b Wang H, Zhang D, Sheng H, Bolm C. J. Org. Chem. 2017; 82: 11854
    • 43c Wang H, Zhang D, Bolm C. Chem. Eur. J. 2018; 24: 14942
  • 44 Hadjiarapoglou L, Spyroudis S, Varvoglis A. Synthesis 1983; 207
    • 45a Moriyama K, Ishida K, Togo H. Org. Lett. 2012; 14: 946
    • 45b Marchetti L, Kantak A, Davis R, DeBoef B. Org. Lett. 2015; 17: 358
    • 45c Kantak AA, Marchetti L, DeBoef B. Chem. Commun. 2015; 51: 3574
  • 46 Kiyokawa K, Kosaka T, Kojima T, Minakata S. Angew. Chem. Int. Ed. 2015; 54: 13719
  • 47 Tian JS, Ng KW. J, Wong JR, Loh TP. Angew. Chem. Int. Ed. 2012; 51: 9105
    • 48a Wolfe JP, Åhman J, Sadighi JP, Singer RA, Buchwald SL. Tetrahedron Lett. 1997; 38: 6367
    • 48b Mann G, Hartwig JF, Driver MS, Fernández-Rivas C. J. Am. Chem. Soc. 1998; 120: 827
    • 48c Laouiti A, Rammah MM, Rammah MB, Marrot J, Couty F, Evano G. Org. Lett. 2012; 14: 6
    • 48d Huang H, Chen W, Xu Y, Li J. Green Chem. 2015; 17: 4715
    • 48e Peacock DM, Roos CB, Hartwig JF. ACS Cent. Sci. 2016; 2: 647
    • 48f Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 9501
    • 48g Kramer S. Org. Lett. 2019; 21: 65
  • 49 Tsutsumi H, Ichikawa T, Narasaka K. Bull. Chem. Soc. Jpn. 1999; 72: 1869
  • 50 Kiyokawa K, Okumatsu D, Minakata S. Angew. Chem. Int. Ed. 2019; 58: 8907
    • 51a Evans DA, Faul MM, Bilodeau MT. J. Am. Chem. Soc. 1994; 116: 2742
    • 51b Tanaka M, Kurosaki Y, Washio T, Anada M, Hashimoto S. Tetrahedron Lett. 2007; 48: 8799
    • 51c Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 11827
    • 51d Miura T, Morimoto M, Murakami M. Org. Lett. 2012; 14: 5214
  • 52 Braun M.-G, Díaz-Rodríguez A, Diorazio L, Fraunhoffer K, Hayler J, Hickey M, Lovelle LE, McLaws M, Parsons AT, Richardson P, Roiban G.-D, Steven A, Terrett JA, White T, Yin J. Org. Process Res. Dev. 2019; 23: 2287