Synlett 2020; 31(08): 772-783
DOI: 10.1055/s-0039-1690815
account
© Georg Thieme Verlag Stuttgart · New York

Reactions Catalyzed by 2-Halogenated Azolium Salts: From Halogen-Bond Donors to Brønsted-Acidic Salts

,
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI) (Grant Nos. 16H06384, 17K15423 and 19K06974) as well as by the Japan Agency for Medical Research and Development (AMED), Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] (Grant No. JP19am0101092j0003). Y.K. also thanks the Takeda Science Foundation.
Further Information

Publication History

Received: 26 December 2019

Accepted after revision: 17 January 2020

Publication Date:
06 February 2020 (online)


Abstract

Our research group has developed a variety of organocatalysts, especially bi- and multi-functional hydrogen-bond (HB)-donor catalysts. Since 2013, we have become interested in halogen-bond (XB) interactions in organic synthesis, and we have focused on the development of organocatalysts using XBs. Although it is difficult to develop otherwise inaccessible transformations using XBs as the primary interaction, we found several unique reactions that use XB interactions in combination with co-catalysts such as trimethylsilyl iodide, Proton Sponge, and Schreiner’s thiourea. During the synthesis of various 2-iodoazolium salts that can serve as XB donors, a ‘protonated’ 2-iodoazolium salt (a Brønsted-acidic salt) was unexpectedly obtained instead of the corresponding ‘alkylated’ 2-iodoazolium salt (XB donor). The obtained Brønsted-acidic salt is unprecedentedly effective for the N-glycosylation of amides. This account summarizes our findings in this area to date.

1 Introduction

2 Organoiodine-Compound-Mediated Semipinacol Rearrangement via C–X Bond Cleavage

3 2-Iodoazolium-Salt-Catalyzed Reactions through Halogen Bonding (XB)

3.1 TMSI-Co-catalyzed Dehydroxylative Coupling of Alcohols with ­Organosilanes

3.2 Base-Co-catalyzed Umpolung Alkylation of Oxindoles with an ­Iodonium(III) Ylide

3.3 Thiourea-Co-catalyzed N-Glycofunctionalization of Amides

3.4 Thiourea-Co-catalyzed N-α-Glycosylation of Amides

4 Catalytic Reactions Using 2-Haloazolium Salts as the Brønsted Acids

4.1 N-β-Glycosylation of Amides

4.2 N-β-2-Deoxyglycosylation of Amides

5 Conclusions

 
  • References

  • 1 Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K. Pure Appl. Chem. 2013; 85: 1711
    • 2a Clark T, Hennemann M, Murray JS, Politzer P. J. Mol. Model. 2007; 13: 291
    • 2b Politzer P, Murray JS, Clark T. Phys. Chem. Chem. Phys. 2010; 12: 7748

      For selected general reviews on halogen bonding, see:
    • 3a Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD. Chem. Rev. 2015; 115: 7118
    • 3b Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
    • 3c Wang H, Wang W, Jin WJ. Chem. Rev. 2016; 116: 5072
    • 3d Costa PJ. Phys. Sci. Rev. 2017; 2: 2017

      For selected recent reviews on halogen bonding in organic synthesis, see:
    • 4a Erdélyi M. Chem. Soc. Rev. 2012; 41: 3547
    • 4b Beale TM, Chudzinski MG, Sarwar MG, Taylor MS. Chem. Soc. Rev. 2013; 42: 1667
    • 4c Carlsson A.-CC, Veiga AX, Erdélyi M. Top. Curr. Chem. 2014; 359: 49
    • 4d Schindler S, Huber SM. Top. Curr. Chem. 2014; 359: 167
    • 4e Jentzsch AV. Pure Appl. Chem. 2015; 87: 15
    • 4f Bulfield D, Huber SM. Chem. Eur. J. 2016; 22: 14434
    • 4g Brown A, Beer PD. Chem. Commun. 2016; 52: 8645
    • 4h Zhao Y, Cotelle Y, Sakai N, Matile S. J. Am. Chem. Soc. 2016; 138: 4270
    • 4i Guha S, Kazi I, Nandy A, Sekar G. Eur. J. Org. Chem. 2017; 5497
    • 4j Tepper R, Schubert US. Angew. Chem. Int. Ed. 2018; 57: 6004
    • 4k Sutar RL, Huber SM. ACS Catal. 2019; 9: 9622
    • 4l Bamberger J, Ostler F, Mancheño OG. ChemCatChem 2019; 11: 5198

      For selected recent related work, see:
    • 5a Nakatsuji H, Sawamura Y, Sakakura A, Ishihara K. Angew. Chem. Int. Ed. 2014; 53: 6974
    • 5b Zong L, Ban X, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2014; 53: 11849
    • 5c Arai T, Suzuki T, Inoue T, Kuwano S. Synlett 2016; 28: 122
    • 5d Kee CW, Wong MW. J. Org. Chem. 2016; 81: 7459
    • 5e Zhang X, Ren J, Tan SM, Tan D, Lee R, Tan CH. Science 2019; 363: 400
  • 6 Bruckmann A, Pena MA, Bolm C. Synlett 2008; 900
    • 7a Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
    • 7b Kuwano S, Suzuki T, Hosaka Y, Arai T. Chem. Commun. 2018; 54: 3847
    • 7c Bergamaschi G, Lascialfari L, Pizzi A, Espinoza MI. M, Demitri N, Milani A, Gori A, Metrangolo P. Chem. Commun. 2018; 54: 10718
    • 8a Matsuzawa A, Takeuchi S, Sugita K. Chem. Asian J. 2016; 11: 2863
    • 8b Perera MD, Aakeröy CB. New J. Chem. 2019; 43: 8311
    • 9a Walter SM, Kniep F, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2011; 50: 7187
    • 9b Kniep F, Rout L, Walter SM, Bensch HK. V, Jungbauer SH, Herdtweck E, Huber SM. Chem. Commun. 2012; 48: 9299
    • 9c Jungbauer SH, Walter SM, Schindler S, Rout L, Kniep F, Huber SM. Chem. Commun. 2014; 50: 6281
    • 9d Castelli R, Schindler S, Walter SM, Kniep F, Overkleeft HS, Van der Marel GA, Huber SM, Codée JD. C. Chem. Asian J. 2014; 9: 2095
    • 9e He W, Ge Y.-C, Tan C.-H. Org. Lett. 2014; 16: 3244
    • 9f Takeda Y, Hisakuni D, Lin C.-H, Minakata S. Org. Lett. 2015; 17: 318
    • 9g Saito M, Tsuji N, Kobayashi Y, Takemoto Y. Org. Lett. 2015; 17: 3000
    • 9h Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
    • 9i Nziko V, de P N, Scheiner S. J. Org. Chem. 2016; 81: 2589
    • 9j Saito M, Kobayashi Y, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2017; 56: 7653
    • 9k Takagi K, Yamauchi K, Murakata H. Chem. Eur. J. 2017; 23: 9495
    • 9l Gliese J.-P, Jungbauer SH, Huber SM. Chem. Commun. 2017; 53: 12052
    • 9m von der Heiden D, Detmar E, Kuchta R, Breugst M. Synlett 2018; 29: 1307
    • 9n Dreger A, Engelage E, Mallick B, Beer PD, Huber SM. Chem. Commun. 2018; 54: 4013
    • 9o Haraguchi R, Hoshino S, Sakai M, Tanazawa S, Morita Y, Komatsu T, Fukuzawa S. Chem. Commun. 2018; 54: 10320
    • 9p Kobayashi Y, Nakatsuji Y, Li S, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 3646
    • 9q Li S, Kobayashi Y, Takemoto Y. Chem. Pharm. Bull. 2018; 66: 768
    • 9r Kuwano S, Suzuki T, Yamanaka M, Tsutsumi R, Arai T. Angew. Chem. Int. Ed. 2019; 58: 10220
    • 9s Ge Y.-C, Yang H, Heusler A, Chua Z, Wong MW, Tan C.-H. Chem. Asian J. 2019; 14: 2656
    • 9t Kaasik M, Metsala A, Kaabel S, Kriis K, Järving I, Kanger T. J. Org. Chem. 2019; 84: 4294
    • 9u Chan Y.-C, Yeung Y.-Y. Org. Lett. 2019; 21: 5665
    • 9v Xu C, Loh CC. J. J. Am. Chem. Soc. 2019; 141: 5381
    • 9w Dreger A, Wonner P, Engelage E, Walter SM, Stoll R, Huber SM. Chem. Commun. 2019; 55: 8262
    • 9x Squitieri RA, Fitzpatrick KP, Jaworski AA, Scheidt KA. Chem. Eur. J. 2019; 25: 10069
    • 9y Liu X, Ma S, Toy PH. Org. Lett. 2019; 21: 9212
    • 10a Kniep F, Walter SM, Herdtweck E, Huber SM. Chem. Eur. J. 2012; 18: 1306
    • 10b Walter SM, Jungbauer SH, Kniep F, Schindler S, Herdtweck E, Huber SM. J. Fluorine Chem. 2013; 150: 14
    • 10c Chan Y.-C, Yeung Y.-Y. Angew. Chem. Int. Ed. 2018; 57: 3483
  • 11 Matsuzaki K, Uno H, Tokunaga E, Shibata N. ACS Catal. 2018; 8: 6601
    • 12a Zhang Y, Han J, Liu Z.-J. RSC Adv. 2015; 5: 25485
    • 12b Heinen F, Engelage E, Dreger A, Weiss R, Huber SM. Angew. Chem. Int. Ed. 2018; 57: 3830
    • 12c Masakado S, Kobayashi Y, Takemoto Y. Chem. Pharm. Bull. 2018; 66: 688
    • 12d Kobayashi Y, Masakado S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 693
    • 12e Saito M, Kobayashi Y, Takemoto Y. Chem. Eur. J. 2019; 25: 10314

      For a report on ICl3, see:
    • 13a Coulembier O, Meyer F, Dubois P. Polym. Chem. 2010; 1: 434
    • 13b For a report on CBr4, see: Kazi I, Guha S, Sekar G. Org. Lett. 2017; 19: 1244
    • 13c For a report on NBS, see: Guha S, Sekar G. Chem. Eur. J. 2018; 24: 14171

    • For reports on iodine, see:
    • 13d Breugst M, von der Heiden D. Chem. Eur. J. 2018; 24: 9187
    • 13e Koenig JJ, Arndt T, Gildemeister N, Neudörfl J.-M, Breugst M. J. Org. Chem. 2019; 84: 7587
    • 13f Arai T, Horigane K, Watanabe O, Kakino J, Sugiyama N, Makino H, Kamei Y, Yabe S, Yamanaka M. iScience 2019; 12: 280

      For a review, see:
    • 14a Varvoglis A. The Organic Chemistry of Polycoordinated Iodine . VCH Publisher Inc; New York: 1992

    • For selected examples of N-iodosuccinimide as a halogen-bonding donor, see:
    • 14b Raatikainen K, Rissanen K. CrystEngComm 2011; 13: 6972
    • 14c Castellote I, Morón M, Burgos C, Alvarez-Builla J, Martin A, Gomez-Sal P, Vaquero JJ. Chem. Commun. 2007; 1281
    • 15a Robertson CC, Perutz RN, Brammer L, Hunter CA. Chem. Sci. 2014; 5: 4179
    • 15b Robertson CC, Wright JS, Carrington EJ, Perutz RN, Hunter CA, Brammer L. Chem. Sci. 2017; 8: 5392
    • 16a Tepper R, Schulze B, Jäger M, Friebe C, Scharf DH, Görls H, Schubert US. J. Org. Chem. 2015; 80: 3139
    • 16b Kaasik M, Kaabel S, Kriis K, Järving I, Aav R, Rissanen K, Kanger T. Chem. Eur. J. 2017; 23: 7337
    • 16c Borissov A, Lim JY. C, Brown A, Christensen K, Thompson AL, Smith MD, Beer PD. Chem. Commun. 2017; 53: 2483
    • 16d Kaasik M, Kaabel S, Kriis K, Järving I, Kanger T. Synthesis 2019; 51: 2128
    • 16e Peterson A, Kaasik M, Metsala A, Järving I, Adamson J, Kanger T. RSC Adv. 2019; 9: 11718
  • 17 Tsuji N, Kobayashi Y, Takemoto Y. Chem. Commun. 2014; 50: 13691
  • 18 For selected examples of N-iodosaccharin as an XB donor, see: Dolenc D, Modec B. New J. Chem. 2009; 33: 2344

    • For reactions co-catalyzed by the TMSCl-InCl3 system, see:
    • 19a Mukaiyama T, Ohno T, Nishimura T, Han JS, Kobayashi S. Bull. Chem. Soc. Jpn. 1991; 64: 2524
    • 19b Onishi Y, Ito T, Yasuda M, Baba A. Eur. J. Org. Chem. 2002; 1578
    • 19c Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2006; 71: 8516
    • 20a Jung ME, Blumenkopf TA. Tetrahedron Lett. 1978; 19: 3657
    • 20b Saito T, Nishimoto Y, Yasuda M, Baba A. J. Org. Chem. 2007; 72: 8588
    • 21a Müller P. Acc. Chem. Res. 2004; 37: 243
    • 21b Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds. John Wiley & Sons; New York: 2013
    • 21c Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 21d Yusubov MS, Yoshimura A, Zhdankin VV. ARKIVOC 2016; (i): 342
    • 22a Telu S, Durmus S, Koser GF. Tetrahedron Lett. 2007; 48: 1863
    • 22b Zhu C, Yoshimura A, Ji L, Wei Y, Nemykin VN, Zhdankin VV. Org. Lett. 2012; 14: 3170

      For selected reviews, see:
    • 23a Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 23b Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 23c Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
    • 24a Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
    • 24b Li X, Deng H, Zhang B, Li J, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2010; 16: 450
    • 24c Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR. Org. Lett. 2012; 14: 1724

      For recent reports on glycosylation using thiourea catalysts, see:
    • 25a Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089
    • 25b Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190
    • 25c Hashimoto Y, Tanikawa S, Saito R, Sasaki K. J. Am. Chem. Soc. 2016; 138: 14840
    • 25d Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
    • 26a Kotke M, Schreiner PR. Synthesis 2007; 779
    • 26b Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152
    • 26c Madarász A, Dósa Z, Varga S, Soós T, Csámpai A, Pápai I. ACS Catal. 2016; 6: 4379
    • 27a Tanaka H, Iwata Y, Takahashi D, Adachi M, Takahashi T. J. Am. Chem. Soc. 2005; 127: 1630
    • 27b Tanaka K, Miyagawa T, Fukase K. Synlett 2009; 1571
    • 27c Li Y, Yang X, Liu Y, Zhu C, Yang Y, Yu B. Chem. Eur. J. 2010; 16: 1871
    • 27d Kistemaker HA. V, van der Heden van Noort GJ, Overkleeft HS, van der Marel GA, Filippov DV. Org. Lett. 2013; 15: 2306
    • 27e Wang X, Wang P, Li D, Li M. Org. Lett. 2019; 21: 2402
  • 28 Only one paper has reported the formation of the N-acylorthoamide as a byproduct. For details, see: Tarumi Y, Takebayashi Y, Atsumi T. J. Heterocycl. Chem. 1984; 21: 849
  • 29 Damkaci F, DeShong P. J. Am. Chem. Soc. 2003; 125: 4408
  • 30 Kovács L, Ősz E, Domokos V, Holzer W, Györgydeák Z. Tetrahedron 2001; 57: 4609
  • 31 Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 32a Schmidt RR, Jung KH. In Carbohydrates in Chemistry and Biology Part 1: Chemistry of Saccharides, Vol. 1. Ernst B, Hart GW, Sinay P. Wiley-VCH; Weinheim: 2000: 5-59
    • 32b Kong F. Carbohydr. Res. 2007; 342: 345
    • 32c Li Y, Mo H, Lian G, Yu B. Carbohydr. Res. 2012; 363: 14
  • 33 Nakatsuji Y, Kobayashi Y, Takemoto Y. Angew. Chem. Int. Ed. 2019; 58: 14115
  • 34 Laupichle L, Sowa CE, Thiem J. Bioorg. Med. Chem. 1994; 2: 1281
  • 35 Bennet CS, Galan MC. Chem. Rev. 2018; 118: 7931
    • 36a Owens JM, Yeung BK. S, Hill DC, Petillo PA. J. Org. Chem. 2001; 66: 1484
    • 36b Batchelor RJ, Green DF, Johnston BD, Patrick BO, Pinto BM. Carbohydr. Res. 2001; 330: 421
    • 36c Srivastava A, Varghese B, Loganathan D. Carbohydr. Res. 2013; 380: 92
    • 37a Keresztes I, Williard PG. J. Am. Chem. Soc. 2000; 122: 10228
    • 37b Li D, Keresztes I, Hopson R, Williard PG. Acc. Chem. Res. 2009; 42: 270
  • 38 Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. Angew. Chem. Int. Ed. 2014; 53: 8190