Synthesis 2020; 52(06): 928-932
DOI: 10.1055/s-0039-1690809
paper
© Georg Thieme Verlag Stuttgart · New York

Iodobenzene-Catalyzed Oxidative Cyclization for the Synthesis of Highly Functionalized Cyclopropanes

Yang Li
,
Hao Guo
,
Renhua Fan
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. of China   Email: rhfan@fudan.edu.cn
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21572033) and the Science and Technology Commission of Shanghai Municipality (19ZR1403400) is greatly appreciated.
Further Information

Publication History

Received: 22 December 2019

Accepted after revision: 09 January 2020

Publication Date:
29 January 2020 (online)


Abstract

An iodobenzene-catalyzed oxidative cyclization of Michael adducts of activated methylene compounds with nitroolefins or chalcones is developed. mCPBA is used as oxidant together with Bu4NI for the generation of a highly reactive iodine(III) species to mediate the cyclopropanation via a ligand exchange and reductive elimination process. A range of highly functionalized cyclopropanes are synthesized with high diastereoselectivities.

Supporting Information

 
  • References

    • 1a Patai S, Rappoport Z. The Chemistry of the Cyclopropyl Group . Wiley; New York: 1987
    • 1b Davies HM. L. Tetrahedron 1993; 49: 5203
    • 1c Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 1d Salaün J. Top. Curr. Chem. 2000; 207: 1
    • 1e Faust R. Angew. Chem. Int. Ed. 2001; 40: 2251
    • 1f Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
    • 1g Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
    • 2a Goldschmidt Z, Crammer B. Chem. Soc. Rev. 1988; 17: 229
    • 2b Wong HN. C, Hon M.-Y, Tse C.-W, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 2c Piers E. In Comprehensive Organic Synthesis, Vol. 5. Trost BM. Pergamon Press; Oxford: 1991: 971
    • 2d Hudlicky T, Fan R, Reed J, Gadamasetti KG. Org. React. 1992; 41: 1
    • 2e Davies HM. L. Tetrahedron 1993; 49: 5203
    • 2f Nonhebel DC. Chem. Soc. Rev. 1993; 22: 347
    • 2g Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 2h Liu J, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
    • 3a Li AH, Dai LX, Aggarwal VK. Chem. Rev. 1997; 97: 2341
    • 3b Salaün J. Chem. Rev. 1989; 89: 1247
    • 3c Padwa A, Krumpe KE. Tetrahedron 1992; 48: 5385
    • 3d Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 3e Doyle MP. In Catalytic Asymmetric Synthesis . Ojima I. VCH; Weinheim: 1993: 63
    • 3f Aggarwal VK, Alsono E, Fang G, Ferrara M, Hynd G, Porcelloni M. Angew. Chem. Int. Ed. 2001; 40: 1433
    • 3g Davies HM. L, Antoulinakis E. Org. React. 2001; 57: 1
    • 3h Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 3i Pietruszka J. Chem. Rev. 2003; 103: 1051
    • 3j Gnad G, Reiser O. Chem. Rev. 2003; 103: 1603
    • 3k Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
    • 3l Roy A, Goswami SP, Sarkar A. Synth. Commun. 2018; 48: 2003
  • 4 Tang M.-C, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
    • 5a Fan R, Ye Y. Adv. Synth. Catal. 2008; 350: 1526
    • 5b Fan R, Ye Y, Li W, Wang L. Adv. Synth. Catal. 2008; 350: 2488
    • 5c Ye Y, Zheng C, Fan R. Org. Lett. 2009; 11: 3156
    • 5d Ye Y, Wang H, Fan R. Org. Lett. 2010; 12: 2802
    • 5e Ye Y, Wang L, Fan R. J. Org. Chem. 2010; 75: 1760
  • 6 Fuchigami T, Fujita T. J. Org. Chem. 1994; 59: 7190
  • 7 Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 8a Zhong W, Liu S, Yang J, Meng X, Li Z. Org. Lett. 2012; 14: 3336
    • 8b Miyamoto K, Sei Y, Yamaguchi K, Ochiai M. J. Am. Chem. Soc. 2009; 131: 1382
    • 8c Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
    • 8d Braddock DC, Cansell G, Hermitage SA. Chem. Commun. 2006; 2483
    • 8e Chen C, You M, Chen H. Synth. Commun. 2016; 46: 73
    • 8f Rodriguez A, Moran WJ. Org. Lett. 2011; 13: 2220
    • 9a Jain N, Xu S, Ciufolini MA. Chem. Eur. J. 2017; 23: 4542
    • 9b Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
    • 10a Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
    • 10b Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
    • 10c Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 10d Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 10e Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chenede A. Angew. Chem. Int. Ed. 2009; 48: 4605
    • 10f Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 10g Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 10h Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
    • 10i Boppisetti JK, Birman VB. Org. Lett. 2009; 11: 1221
  • 11 McCooey SH, McCabe T, Connon SJ. J. Org. Chem. 2006; 71: 7494
  • 12 Le Menn JC, Tallec AS, Sarrazin J. Can. J. Chem. 1991; 69: 761
  • 13 Villemin D, Thibault-Strarzyk F, Hachemi M. Synth. Commun. 1994; 24: 1425