Synlett 2020; 31(03): 205-210
DOI: 10.1055/s-0039-1690764
account
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Chromium-Catalyzed Organic Transformations

Xiaoming Zeng
We thank the National Natural Science Foundation of China (Nos. 21572175, and 21971168) and Sichuan University for financial support.
Further Information

Publication History

Received: 13 October 2019

Accepted after revision: 21 November 2019

Publication Date:
13 December 2019 (online)


Abstract

The use of simple and low-cost chromium chloride salts as catalysts or precatalysts for the development of cost-effective methods is of significant synthetic and mechanistic interest. Here, recent advances in chromium-catalyzed organic transformations are highlighted.

1 Introduction

2 Arylmagnesiation of Alkynes

3 Catalytic Functionalization of C(aryl)–O Bonds

4 Catalytic Functionalization of C(aryl)–N Bonds

5 Catalytic Functionalization of C(aryl)–H Bonds

6 NHK-Type Reactions

7 Hydrogenation

8 Conclusions

 
  • References

    • 1a Egorova KS, Ananikov VP. Organometallics 2017; 36: 4071
    • 1b Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
  • 2 Hein F. Ber. Dtsch. Chem. Ges. 1919; 52: 195
  • 3 Fischer EO, Hafner W. Z. Naturforsch., B 1955; 10: 665
    • 4a Huang Y, Li JE, Zhou Q, Zhou J. J. Polym. Sci., Polym. Chem. Ed. 1985; 23: 1853
    • 4b Huang Y.-Z, Li J.-S, Zhou J.-Q, Zhu Z.-M, Hou G.-Y. J. Organomet. Chem. 1981; 205: 185
    • 4c Huang Y.-Z, Li J.-S, Zhou J.-Q, Wang Q.-W, Gui M.-M. J. Organomet. Chem. 1981; 218: 164
    • 5a Seyferth D. Organometallics 2002; 21: 2800
    • 5b Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
  • 6 Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
  • 7 Jin H, Uenishi J, Christ WJ, Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
  • 8 Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
  • 9 Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 10a Agapie T. Coord. Chem. Rev. 2011; 255: 861
    • 10b Zeng X, Cong X. Org. Chem. Front. 2015; 2: 69
    • 10c Li J, Knochel P. Synthesis 2019; 51: 2100
  • 11 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 12 Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
  • 13 Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
  • 14 Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
  • 15 Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
  • 16 Yan J, Yoshikai N. Org. Chem. Front. 2017; 4: 1972
  • 17 Yan J, Yoshikai N. ACS Catal. 2016; 6: 3738
  • 18 Yan J, Yoshikai N. Org. Lett. 2017; 19: 6630
  • 19 Tobisu M, Chatani N. Top. Organomet. Chem. 2012; 44: 35
  • 20 Li B.-J, Yu D.-G, Sun C.-L, Shi Z.-J. Chem. Eur. J. 2011; 17: 1728
    • 21a Yamaguchi J, Muto K, Itami K. Eur. J. Org. Chem. 2013; 19
    • 21b Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 21c Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
    • 21d Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
    • 21e So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 22 Cong X, Tang H, Zeng X. J. Am. Chem. Soc. 2015; 137: 14367
  • 24 Rong Z, Luo M, Zeng X. Org. Lett. 2019; 21: 6869
    • 25a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 25b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
    • 25c Roglans A, Pla-Quintana A, Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
    • 26a Ueno S, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 6098
    • 26b Koreeda T, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
    • 26c Koreeda T, Kochi T, Kakiuchi F. Organometallics 2013; 32: 682
    • 26d Zhao Y, Snieckus V. Org. Lett. 2014; 16: 3200
  • 27 Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
  • 28 Cong X, Fan F, Ma P, Luo M, Chen H, Zeng X. J. Am. Chem. Soc. 2017; 139: 15182
    • 29a Xiao K.-J, Wang A.-E, Huang Y.-H, Huang P.-Q. Asian J. Org. Chem. 2012; 1: 130
    • 29b Xiao K.-J, Huang Y.-H, Huang P.-Q. Huaxue Xuebao 2012; 70: 1917
    • 29c Shi S, Szostak M. Chem. Eur. J. 2016; 22: 10420
    • 29d Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
    • 29e Liu C, Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
    • 29f Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
  • 30 Chen C, Liu P, Luo M, Zeng X. ACS Catal. 2018; 8: 5864
  • 31 Kuzmina OM, Knochel P. Org. Lett. 2014; 16: 5208
  • 32 Li Y, Deng G, Zeng X. Organometallics 2016; 35: 747
  • 33 Tang J, Liu P, Zeng X. Chem. Commun. 2018; 54: 9325
  • 34 Liu P, Chen C, Cong X, Tang J, Zeng X. Nat. Commun. 2018; 9: 4637
    • 35a Kendall AJ, Johnson SJ, Bullock RM, Mock MT. J. Am. Chem. Soc. 2018; 140: 2528
    • 35b Shiina K. J. Am. Chem. Soc. 1972; 94: 9266
  • 36 Yin J, Li J, Wang G.-X, Yin Z.-B, Zhang W.-X, Xi Z. J. Am. Chem. Soc. 2019; 141: 4241
  • 37 Kang JY, Connell BT. J. Am. Chem. Soc. 2010; 132: 7826
  • 38 Chen W, Yang Q, Zhou T, Tian Q, Zhang G. Org. Lett. 2015; 17: 5236
  • 39 Xiong Y, Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
  • 40 Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
  • 41 Mitsunuma H, Tanabe S, Fuse H, Ohkubo K, Kanai M. Chem. Sci. 2019; 10: 3459
  • 42 Han B, Ma P, Cong X, Chen H, Zeng X. J. Am. Chem. Soc. 2019; 141: 9018