Synlett 2020; 31(02): 117-124
DOI: 10.1055/s-0039-1690753
synpacts
© Georg Thieme Verlag Stuttgart · New York

Lewis Base Catalysis Based on Homoconjugate Addition: Rearrangement of Electron-Deficient Cyclopropanes and Their Derivatives

Kaki Raveendra Babu
,
Xin He
,
Silong Xu
We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21871218 and 21602167), the Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ2019), the China Postdoctoral Science Foundation (Nos. 2014M550484, 2015T81013, and 2015M580830), Shaanxi Province Postdoctoral Science Foundation, and the Key Laboratory Construction Program of Xi’an Municipal Bureau of Science and Technology (201805056ZD7CG40).
Further Information

Publication History

Received: 11 October 2019

Accepted after revision: 06 November 2019

Publication Date:
20 November 2019 (online)


Abstract

Cyclopropane is one of the most reactive functionalities owing to its intrinsic ring strain. Transition-metal catalysis and Lewis acid catalysis have been extensively used in ring openings of cyclopropanes; however, Lewis base-catalyzed activation of cyclopropanes remains largely unexplored. Upon nucleophilic attack with Lewis bases, cyclopropanes undergo ring cleavage in a manner known as homoconjugate addition to form zwitterionic intermediates, which have significant potential for reaction development but have garnered little attention. Here, we present a brief overview of this area, with an emphasis on our recent efforts on Lewis base-catalyzed rearrangement reactions of electron-deficient cyclopropanes using the homoconjugate addition process.

1 Introduction

2 DABCO-Catalyzed Cloke–Wilson Rearrangement of Cyclopropyl Ketones

3 Hydroxylamine-Mediated Tandem Cloke–Wilson/Boulton–­Katritzky Reaction of Cyclopropyl Ketones

4 Phosphine-Catalyzed Rearrangement of Vinylcyclopropyl Ketones To Form Cycloheptenones

5 Phosphine-Catalyzed Rearrangement of Alkylidenecyclopropyl Ketones To Form Polysubstituted Furans and Dienones

6 Conclusion and Outlook

 
  • References

  • 1 Wong HN. C, Hon M.-Y, Tse C.-W, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
  • 2 Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
  • 3 Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
  • 5 Dudev T, Lim C. J. Am. Chem. Soc. 1998; 120: 4450
  • 6 de Meijere A. Angew. Chem. Int. Ed. Engl. 1979; 18: 809
    • 7a Fumagalli G, Stanton S, Bower JF. Chem. Rev. 2017; 117: 9404
    • 7b Jiao L, Yu Z.-X. J. Org. Chem. 2013; 78: 6842
    • 7c Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 7d Brandi A, Cicchi S, Cordero FM, Goti A. Chem. Rev. 2014; 114: 7317
    • 7e Halskov KS, Kniep F, Lauridsen VH, Iversen EH, Donslund BS, Jørgensen KA. J. Am. Chem. Soc. 2015; 137: 1685
    • 7f Blom J, Vidal-Albalat A, Jørgensen J, Barløse CL, Jessen KS, Iversen MV, Jørgensen KA. Angew. Chem. Int. Ed. 2017; 56: 11831
    • 8a Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
    • 8b Lebold TP, Kerr MA. Pure Appl. Chem. 2010; 82: 1797
    • 8c Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 8d Gharpure SJ, Nanda LN. Tetrahedron Lett. 2017; 58: 711
    • 8e Pandey AK, Ghosh A, Banerjee P. Isr. J. Chem. 2016; 56: 512
    • 8f Werz DB, Biju AT. Angew. Chem. Int. Ed. 2019; in press; DOI: 10.1002/anie.201909213.
  • 9 Danishefsky S. Acc. Chem. Res. 1979; 12: 66
  • 10 Methot JL, Roush WR. Adv. Synth. Catal. 2004; 346: 1035
  • 11 Ohkata K, Sakai T, Kubo Y, Hanafusa T. J. Chem. Soc., Chem. Commun. 1974; 581
  • 12 Danishefsky S, Singh RK. J. Am. Chem. Soc. 1975; 97: 3239
  • 13 Budynina EM, Ivanova OA, Averina EB, Kuznetsova TS, Zefirov NS. Tetrahedron Lett. 2006; 47: 647
    • 15a Xu S, Chen J, Shang J, Qing Z, Zhang J, Tang Y. Tetrahedron Lett. 2015; 56: 6456
    • 15b Chen R, Xu S, Fan X, Li H, Tang Y, He Z. Org. Biomol. Chem. 2015; 13: 398
    • 15c Chen R, Xu S, Wang L, Tang Y, He Z. Chem. Commun. 2013; 49: 3543
    • 15d Zhang J, Tang Y, Wei W, Wu Y, Li Y, Zhang J, Zheng Y, Xu S. Org. Lett. 2017; 19: 3043
    • 15e Wei W, Tang Y, Zhou Y, Deng G, Liu Z, Wu J, Li Y, Zhang J, Xu S. Org. Lett. 2018; 20: 6559
    • 15f Wu J, Tang Y, Wei W, Wu Y, Li Y, Zhang J, Zheng Y, Xu S. Angew. Chem. Int. Ed. 2018; 57: 6284
    • 15g He X, Tang Y, Wang Y, Chen J.-B, Xu S, Dou J, Li Y. Angew. Chem. Int. Ed. 2019; 58: 10698
  • 16 Baldwin JE. Chem. Rev. 2003; 103: 1197
    • 17a Cloke JB. J. Am. Chem. Soc. 1929; 51: 1174
    • 17b Wilson CL. J. Am. Chem. Soc. 1947; 69: 3002
    • 18a Yadav VK, Balamurugan R. Org. Lett. 2001; 3: 2717
    • 18b Bowman RK, Johnson JS. Org. Lett. 2006; 8: 573
    • 18c Lin C.-H, Pursley D, Klein JE. M. N, Teske J, Allen JA, Rami F, Kohn A, Plietker B. Chem. Sci. 2015; 6: 7034
  • 19 Ortega A, Manzano R, Uria U, Carrillo L, Reyes E, Tejero T, Merino P, Vicario JL. Angew. Chem. Int. Ed. 2018; 57: 8225
  • 20 Piotrowski ML, Kerr MA. Org. Lett. 2018; 20: 7624
  • 21 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
  • 22 Boulton AJ, Katritzky AR, Hamid AM. J. Chem. Soc. C 1967; 2005
  • 23 Zhou J, Zeng X.-P. In Multicatalyst System in Asymmetric Catalysis . Zhou J. Wiley; Hoboken: 2014. Chap. 9, 633
  • 24 Chagarovskiy AO, Budynina EM, Ivanova OA, Rybakov VB, Trushkov IV, Melnikov MY. Org. Biomol. Chem. 2016; 14: 2905
  • 25 Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
  • 26 Fan YC, Kwon O. Chem. Commun. 2013; 49: 11588
  • 27 Nguyen TV, Hartmann JM, Enders D. Synthesis 2013; 45: 845
  • 28 Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 3470
  • 29 Wang Z, Xu X, Kwon O. Chem. Soc. Rev. 2014; 43: 2927
  • 31 Tang X.-Y, Shi M. Tetrahedron 2009; 65: 8863