Synlett 2019; 30(19): 2123-2130
DOI: 10.1055/s-0039-1690711
account
© Georg Thieme Verlag Stuttgart · New York

Reprogramming Nonribosomal Peptide Synthesis by Surgical Mutation

,
Douglas A. Hansen
,
Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland   Email: hilvert@org.chem.ethz.com   Email: niquille@mit.edu   Email: dougland@umich.edu
› Author Affiliations
This work was generously funded by the Swiss National Science Foundation and the ETH Zurich. D.A.H. is grateful for an ETH Zurich Postdoctoral Fellowship that was co-funded by the Marie Curie Actions program.
Further Information

Publication History

Received: 20 August 2019

Accepted after revision: 25 September 2019

Publication Date:
28 October 2019 (online)


Abstract

Nonribosomal peptide synthetases produce highly modified bioactive peptides, many of which are used therapeutically. As such, they have been the target of intense protein engineering to enable biosynthetic access to peptide variants with improved drug properties or altered bioactivities. In this account, we describe our ongoing efforts to reprogram nonribosomal peptide synthesis by surgical mutation. In contrast to ribosomal biosynthesis, nonribosomal peptide synthesis has proven difficult to engineer, arguably due to a lack of suitable tools. To address this limitation, we have established a high-throughput assay that provides unprecedented control over the gatekeeper adenylation domains responsible for building block selection and incorporation. Expansion of this strategy to other building blocks and domains promises to make it a powerful evolutionary platform for tailoring assembly lines for custom synthesis of peptide therapeutics.

1. Nonribosomal Peptides

2. Reprogramming A Domains for Clickable Amino Acids

3 A High-Throughput A Domain Assay

4 Reprogramming A Domains for β-Amino Acids

5 Downstream Processing

6 Conclusions and Outlook

 
  • References

  • 1 Current address: Department of Biological Engineering, MIT, Cambridge, MA 02139, USA.
  • 2 Current address: Antheia Inc. Menlo Park, CA 94025, USA.
  • 3 Süssmuth RD, Mainz A. Angew. Chem. Int. Ed. 2017; 56: 3770
  • 4 Winn M, Fyans JK, Zhuo Y, Micklefield J. Nat. Prod. Rep. 2016; 33: 317
  • 5 Brown AS, Calcott MJ, Owen JG, Ackerley DF. Nat. Prod. Rep. 2018; 35: 1210
  • 6 Sieber SA, Marahiel MA. Chem. Rev. 2005; 105: 715
  • 7 Cane DE, Walsh CT, Khosla C. Science 1998; 282: 63
  • 8 Walsh CT, O’Brien RV, Khosla C. Angew. Chem. Int. Ed. 2013; 52: 7098
  • 9 Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, De Los Santos EL. C, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH. Nucleic Acids Res. 2017; 45: W36
  • 10 Baltz RH, Brian P, Miao V, Wrigley SK. J. Ind. Microbiol. Biotechnol. 2006; 33: 66
  • 11 Nguyen KT, Ritz D, Gu J.-Q, Alexander D, Chu M, Miao V, Brian P, Baltz RH. Proc. Natl. Acad. Sci. USA 2006; 103: 17462
  • 12 Doekel S, Coëffet-Le Gal MF, Gu JQ, Chu M, Baltz RH, Brian P. Microbiology 2008; 154: 2872
  • 13 Duerfahrt T, Doekel S, Sonke T, Quaedflieg PJ. L. M, Marahiel MA. Eur. J. Biochem. 2003; 270: 4555
  • 14 Crüsemann M, Kohlhaas C, Piel J. Chem. Sci. 2013; 4: 1041
  • 15 Kries H, Niquille DL, Hilvert D. Chem. Biol. 2015; 22: 640
  • 16 Bozhüyük KA. J, Fleischhacker F, Linck A, Wesche F, Tietze A, Niesert C.-P, Bode HB. Nat. Chem. 2017; 10: 275
  • 17 Bozhüyük KA. J, Linck A, Tietze A, Kranz J, Wesche F, Nowak S, Fleischhacker F, Shi YN, Grün P, Bode HB. Nat. Chem. 2019; 11: 653
  • 18 Gulick AM. Curr. Opin. Chem. Biol. 2016; 35: 89
  • 19 Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Nature 2016; 529: 239
  • 20 Reimer JM, Haque AS, Tarry MJ, Schmeing TM. Curr. Opin. Struct. Biol. 2018; 49: 104
  • 21 Conti E, Stachelhaus T, Marahiel MA, Brick P. EMBO J. 1997; 16: 4174
  • 22 Stachelhaus T, Mootz HD, Marahiel MA. Chem. Biol. 1999; 6: 493
  • 23 Challis GL, Ravel J, Townsend CA. Chem. Biol. 2000; 7: 211
  • 24 Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. Nucleic Acids Res. 2011; 39: W362
  • 25 Eppelmann K, Stachelhaus T, Marahiel MA. Biochemistry 2002; 41: 9718
  • 26 Thirlway J, Lewis R, Nunns L, Al Nakeeb M, Styles M, Struck AW, Smith CP, Micklefield J. Angew. Chem. Int. Ed. 2012; 51: 7181
  • 27 Jäckel C, Hilvert D. Curr. Opin. Biotechnol. 2010; 21: 753
  • 28 Packer MS, Liu DR. Nat. Rev. Genet. 2015; 16: 379
  • 29 Otten LG, Schaffer ML, Villiers BR. M, Stachelhaus T, Hollfelder F. Biotechnol. J. 2007; 2: 232
  • 30 Calendar R, Berg P. Biochemistry 1966; 5: 1681
  • 31 Kries, H. Doctoral Thesis No. 21752; ETH Zürich, 2014.
  • 32 Kries H, Wachtel R, Pabst A, Wanner B, Niquille D, Hilvert D. Angew. Chem. Int. Ed. 2014; 53: 10105
  • 33 Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A. Angew. Chem. Int. Ed. 2005; 44: 4192
  • 34 Sandström AG, Wikmark Y, Engström K, Nyhlén J, Bäckvall JE. Proc. Natl. Acad. Sci. USA 2012; 109: 78
  • 35 Chen C.-Y, Georgiev I, Anderson AC, Donald BR. Proc. Natl. Acad. Sci. USA 2009; 106: 3764
  • 36 Evans BS, Chen Y, Metcalf WW, Zhao H, Kelleher NL. Chem. Biol. 2011; 18: 601
  • 37 Fischbach MA, Lai JR, Roche ED, Walsh CT, Liu DR. Proc. Natl. Acad. Sci. USA 2007; 104: 11951
  • 38 Boder ET, Wittrup KD. Nat. Biotechnol. 1997; 15: 553
  • 39 Cherf GM, Cochran JR. In, Yeast Surface Display: Methods, Protocols, and Applications . Humana Press; New York: 2015: 155
  • 40 Boder ET, Raeeszadeh-Sarmazdeh M, Price JV. Arch. Biochem. Biophys. 2012; 526: 99
  • 41 Zhang K, Nelson KM, Bhuripanyo K, Grimes KD, Zhao B, Aldrich CC, Yin J. Chem. Biol. 2013; 20: 92
  • 42 Niquille, D. L. Doctoral Thesis No. 24827; ETH Zürich, 2018.
  • 43 Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT. Chem. Biol. 1996; 3: 923
  • 44 Kudo F, Miyanaga A, Eguchi T. Nat. Prod. Rep. 2014; 31: 1056
  • 45 Miyanaga A, Cieślak J, Shinohara Y, Kudo F, Eguchi T. J. Biol. Chem. 2014; 289: 31448
  • 46 Niquille DL, Hansen DA, Mori T, Fercher D, Kries H, Hilvert D. Nat. Chem. 2018; 10: 282
  • 47 Villiers BR. M, Hollfelder F. ChemBioChem 2009; 10: 671
  • 48 Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT. Nature 2000; 407: 215
  • 49 Trauger JW, Kohli RM, Walsh CT. Biochemistry 2001; 40: 7092
  • 50 Gruenewald S, Mootz HD, Stehmeier P, Stachelhaus T. Appl. Environ. Microbiol. 2004; 70: 3282
  • 51 Tseng CC, Bruner SD, Kohli RM, Marahiel MA, Walsh CT, Sieber SA. Biochemistry 2002; 41: 13350
  • 52 Kast P. ChemBioChem 2011; 12: 2395
  • 53 Kast P, Hennecke H. J. Mol. Biol. 1991; 222: 99
  • 54 Ibba M, Kast P, Hennecke H. Biochemistry 1994; 33: 7107
  • 55 Liu CC, Schultz PG. Annu. Rev. Biochem. 2010; 79: 413
  • 56 Belshaw PJ, Walsh CT, Stachelhaus T. Science 1999; 284: 486
  • 57 Ehmann DE, Trauger JW, Stachelhaus T, Walsh CT. Chem. Biol. 2000; 7: 765
  • 58 Steiniger C, Hoffmann S, Süssmuth RD. Cell Chem. Biol. 2019; 26: 1
  • 59 Kaniusaite M, Tailhades J, Marschall EA, Goode RJ. A, Schittenhelm B, Cryle MJ. Chem. Sci. 2019; preprint; DOI: DOI: 10.1039/C9SC03678D.
  • 60 Clugston SL, Sieber SA, Marahiel MA, Walsh CT. Biochemistry 2003; 42: 12095