Synlett 2019; 30(18): 2062-2067
DOI: 10.1055/s-0039-1690706
letter
© Georg Thieme Verlag Stuttgart · New York

Selective and Scalable Dehydrogenative Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol

Maximilian Selt
a   Institut of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
b   MAterial Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128 Mainz, Germany
,
Stamo Mentizi
a   Institut of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
,
Dieter Schollmeyer
a   Institut of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
,
Robert Franke
c   Evonik Performance Materials GmbH, Paul-Baumann- Straße 1, 45772 Marl, Germany
d   Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
,
a   Institut of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany   Email: waldvogel@uni-mainz.de
b   MAterial Science IN MainZ (MAINZ), Graduate School of Excellence, Staudingerweg 9, 55128 Mainz, Germany
› Author Affiliations
The authors highly appreciate the financial support by the Graduate School Materials Science in Mainz, Deutsche Forschungsgemeinschaft (Grant Number GSC 266), and the support by the Bundesministerium für Bildung und Forschung (BMBF-EPSYLON, Grant Number FKZ 13XP5016D).
Further Information

Publication History

Received: 15 August 2019

Accepted after revision: 21 September 2019

Publication Date:
17 October 2019 (online)


Abstract

3,3′,5,5′-Tetramethyl-2,2′-biphenol is a compound of high technical significance, as it exhibits superior properties as building block for ligands in the transition-metal catalysis. However, side reactions and overoxidation are challenging issues in the conventional synthesis of this particular biphenol. Here, an electrochemical method is presented as powerful and sustainable alternative to conventional chemical strategies, which gives good yields up to 51%. Despite using inexpensive and well-available bromide-containing supporting electrolytes, the issue of bromination and general byproduct formation is effectively suppressed by adding water to the electrolyte. Additionally, the scalability of this method was demonstrated by conducting the electrolysis on a 122 g scale.

Supporting Information

 
  • References and Notes

    • 1a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 1b Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 1c Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 1d Zechmeister L, Herz W, Bringmann G. Progress in the Chemistry of Organic Natural Products, Vol. 82 . Springer; Wien/New York: 2001
    • 2a Francke R, Cericola D, Kötz R, Schnakenburg G, Waldvogel SR. Chem. Eur. J. 2011; 17: 3082
    • 2b Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Chem. Rev. 2009; 109: 897
    • 2c Kirsch P, Bremer M. Angew. Chem. Int. Ed. 2000; 39: 4216
    • 2d Kirsch P, Bremer M. Angew. Chem. 2000; 112: 4384
    • 2e Su S.-J, Tanaka D, Li Y.-J, Sasabe H, Takeda T, Kido J. Org. Lett. 2008; 10: 941
    • 3a Alexander JB, La DS, Cefalo DR, Hoveyda AH, Schrock RR. J. Am. Chem. Soc. 1998; 120: 4041
    • 3b La DS, Sattely ES, Ford JG, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2001; 123: 7767
    • 3c Kiely AF, Jernelius JA, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2002; 124: 2868
    • 3d Hultzsch KC, Jernelius JA, Hoveyda AH, Schrock RR. Angew. Chem. Int. Ed. 2002; 41: 589
    • 3e Cortez GA, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2007; 46: 4534
    • 3f Singh R, Czekelius C, Schrock RR, Müller P, Hoveyda AH. Organometallics 2007; 26: 2528
    • 3g van Leeuwen PW. N. M, Kamer PC. J, Claver C, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
    • 3h Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
    • 4a Hayano S, Kurakata H, Tsunogae Y, Nakayama Y, Sato Y, Yasuda H. Macromolecules 2003; 36: 7422
    • 4b Alexakis A, Polet D, Benhaim C, Rosset S. Tetrahedron: Asymmetry 2004; 15: 2199
    • 4c Alexakis A, Polet D, Rosset S, March S. J. Org. Chem. 2004; 69: 5660
    • 4d Li K, Alexakis A. Angew. Chem. Int. Ed. 2006; 45: 7600
    • 4e Falciola CA, Alexakis A. Angew. Chem. Int. Ed. 2007; 46: 2619
    • 4f Li K, Alexakis A. Chem. Eur. J. 2007; 13: 3765
    • 4g Mata Y, Pàmies O, Diéguez M. Chem. Eur. J. 2007; 13: 3296
    • 4h Palais L, Mikhel IS, Bournaud C, Micouin L, Falciola CA, Vuagnoux-d’Augustin M, Rosset S, Bernardinelli G, Alexakis A. Angew. Chem. Int. Ed. 2007; 46: 7462
    • 4i Raluy E, Diéguez M, Pàmies O. J. Org. Chem. 2007; 72: 2842
    • 4j Vuagnoux-d’Augustin M, Kehrli S, Alexakis A. Synlett 2007; 2057
    • 4k Hawner C, Li K, Cirriez V, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 8211
    • 4l Smith SE, Rosendahl T, Hofmann P. Organometallics 2011; 30: 3643
    • 5a Bowden K, Reece CH. J. Chem. Soc. 1950; 1686
    • 5b Barrett AG.M, Itoh T, Wallace EM. Tetrahedron Lett. 1993; 34: 2233
    • 5c Hwang D.-R, Chen C.-P, Uang B.-J. Chem. Commun. 1999; 1207
    • 5d Sharma VB, Jain SL, Sain B. Tetrahedron Lett. 2003; 44: 2655
    • 5e Yadav JS, Reddy BV. S, Uma Gayathri K, Prasad AR. New J. Chem. 2003; 27: 1684
    • 5f Jiang Q, Sheng W, Tian M, Tang J, Guo C. Eur. J. Org. Chem. 2013; 1861
  • 6 Kaeding WW. J. Org. Chem. 1963; 28: 1063
    • 7a Bamberger E, Brun J. Ber. Dtsch. Chem. Ges. 1907; 40: 1949
    • 7b Cosgrove SL, Waters WA. J. Chem. Soc. 1951; 1726
    • 7c Haynes CG, Turner AH, Waters WA. J. Chem. Soc. 1956; 2823
    • 7d Huddle PA, Perold GW. J. Chem. Soc., Perkin Trans. 1 1980; 2617
    • 7e Elovitz MS, Fish W. Environ. Sci. Technol. 1995; 29: 1933
  • 8 Quell T, Mirion M, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. ChemistryOpen 2016; 5: 115
  • 9 Neelamegam R, Palatnik MT, Fraser-Rini J, Slifstein M, Abi-Dargham A, Easwaramoorthy B. Tetrahedron Lett. 2010; 51: 2497
  • 10 Constantin M.-A, Conrad J, Beifuss U. Tetrahedron Lett. 2012; 53: 3254
    • 11a Sequeira CA. C, Santos DM. F. J. Braz. Chem. Soc. 2009; 20: 387
    • 11b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 11c Schäfer HJ. C. R. Chim. 2011; 14: 745
    • 11d Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 11e Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
    • 11f Yan M, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2018; 57: 4149
    • 11g Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
    • 12a Waldvogel SR, Janza B. Angew. Chem. Int. Ed. 2014; 53: 7122
    • 12b Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 12c Wiebe A, Riehl B, Lips S, Franke R, Waldvogel SR. Sci. Adv. 2017; 3: eaao3920
    • 12d Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 13a Nilsson A, Ronlán A, Parker VD. J. Chem. Soc., Perkin Trans. 1 1973; 2337
    • 13b Malkowsky IM, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Org. Chem. 2006; 4569
  • 14 Malkowsky IM, Rommel CE, Wedeking K, Fröhlich R, Bergander K, Nieger M, Quaiser C, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Org. Chem. 2006; 241
  • 15 Kirste A, Nieger M, Malkowsky IM, Stecker F, Fischer A, Waldvogel SR. Chem. Eur. J. 2009; 15: 2273
  • 16 Kirste A, Hayashi S, Schnakenburg G, Malkowsky IM, Stecker F, Fischer A, Fuchigami T, Waldvogel SR. Chem. Eur. J. 2011; 17: 14164
    • 17a Malkowsky IM, Rommel CE, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Chem. Eur. J. 2006; 12: 7482
    • 17b Malkowsky IM, Fröhlich R, Griesbach U, Pütter H, Waldvogel SR. Eur. J. Inorg. Chem. 2006; 1690
  • 18 Johnston KM, Jacobson RE, Williams GH. J. Chem. Soc. C 1969; 1424
  • 19 Waldvogel SR. Pure Appl. Chem. 2010; 82: 1055
    • 20a Barjau J, Königs P, Kataeva O, Waldvogel S. Synlett 2008; 2309
    • 20b Barjau J, Schnakenburg G, Waldvogel SR. Angew. Chem. Int. Ed. 2011; 50: 1415
    • 20c Astruc D. Modern Arene Chemistry 2002
  • 21 General Protocol for Screening Reactions A solution of 2,4-dimethylphenol (1, 2–10 mmol) and the respective supporting electrolyte (0.2–1.0 mmol) in 5 mL HFIP or HFIP with 18 vol% methanol or HFIP with 5–40 vol% water was transferred into a screening electrolysis cell equipped with a glassy carbon anode and a glassy carbon cathode. A constant current electrolysis with a current density of 3.9–25.6 mA·cm–2 was performed at 20–60 °C. After application of 1.0–1.7 F per mol of 1, the electrolysis was stopped, and the solvent mixture was recovered in vacuo (50 °C, 200–70 mbar). Subsequently, the sample was prepared according to the respective internal calibration (IK1–IK4, see section 2 in the Supporting Information).
  • 22 General Protocol for the Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol (2) A solution of 2,4-dimethylphenol (1, 3.05 g, 25.0 mmol) and the respective supporting electrolyte (2.0 mmol) in 25 mL HFIP with 15 vol% water was transferred into an undivided beaker-type electrolysis cell equipped with a glassy carbon anode and a glassy carbon cathode. A constant current electrolysis with a current density of 6.1 mA·cm–2 was performed at 50 °C. After application of 2895 C (1.2 F per mol of 1 ) the electrolysis was stopped, and the solvent mixture was recovered in vacuo (50 °C, 200–20 mbar), and the crude product was purified by short-path distillation (recovery of starting material 1: 60 °C, 2·10–3 mbar; sublimation of product 2: 140 °C, 2·10–3 mbar).
    • 23a Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971
    • 23b Francke R, Cericola D, Kötz R, Weingarth D, Waldvogel SR. Electrochim. Acta 2012; 62: 372
    • 23c Waldvogel SR, Elsler B. Electrochim. Acta 2012; 82: 434
  • 24 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
  • 25 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 88
    • 26a Eberson L, Hartshorn MP, Persson O. J. Chem. Soc., Perkin Trans. 2 1995; 1735
    • 26b Eberson L, Hartshorn MP, Persson O, Radner F. Chem. Commun. 1996; 2105
  • 27 Hollóczki O, Berkessel A, Mars J, Mezger M, Wiebe A, Waldvogel SR, Kirchner B. ACS Catal. 2017; 7: 1846
    • 28a Millington JP. J. Chem. Soc. B 1969; 982
    • 28b Casalbore G, Mastragostino M, Valcher S. J. Electroanal. Chem. Interfacial Electrochem. 1977; 77: 373
    • 28c Taniguchi I, Yano M, Yamaguchi H, Yasukouchi K. J. Electroanal. Chem. Interfacial Electrochem. 1982; 132: 233
    • 28d Milisavljević SS, Wurst K, Laus G, Vukićević MD, Vukićević RD. Steroids 2005; 70: 867
    • 28e Lyalin BV, Petrosyan VA. Russ. J. Electrochem. 2013; 49: 497
    • 28f Thasan R, Kumarasamy K. Korean J. Chem. Eng. 2014; 31: 365
    • 28g Hammerich O, Speiser B. Organic Electrochemistry, 5th ed. CRC Press; Boca Raton: 2016
  • 29 Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
  • 30 Chemical catalogue: TCI (25.02.2019), CAS-No: 71-91-0, >98.0%.
  • 31 Chemical catalogue: TCI (25.02.2019), CAS-No: 1941-30-6, >98.0%.
  • 32 Chemical catalogue: TCI (25.02.2019), CAS-No: 1643-19-2, >99.0%.
  • 33 Chemical catalogue: TCI (25.02.2019), CAS-No: 5197-95-5, >98.0%.