Synlett 2019; 30(16): 1924-1928
DOI: 10.1055/s-0039-1690675
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed C–H Sulfonylmethylation of Indoles in Water–PEG400

Shuai Lu
,
Yu-Shen Zhu
,
Ke-Xin Yan
,
Tian-Wei Cui
,
Xinju Zhu
,
Xin-Qi Hao
,
Mao-Ping Song
Financial support from the National Natural Science Foundation of China (Grant No. 21672192 and 21803059), the China Postdoctoral Science Foundation (Grant No. 2016M602254 and 2016M600582), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 17HASTIT004), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions (Grant No. 2015GGJS-157), and the Natural Science Foundation of Henan Province (Grant No. 182300410255) is gratefully appreciated.
Further Information

Publication History

Received: 18 June 2019

Accepted after revision: 23 August 2019

Publication Date:
10 September 2019 (online)

Abstract

An iron-catalyzed C–H sulfonylmethylation of indoles in water–PEG400 has been developed using p-toluenesulfonylmethyl isocyanide. This protocol enables direct regioselective construction of Csp2–Csp3 bond at the C3 position of indoles with a broad range of substrate compatibility in moderate to good yields, which is cost-effective and environmentally friendly.

Supporting Information

 
  • References and Notes

    • 1a Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2013; 30: 694
    • 1b Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
    • 1c Ishikura M, Abe T, Choshi T, Hibino S. Nat. Prod. Rep. 2015; 32: 1389
    • 1d Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 2a Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: 215
    • 2b Platon M, Amardeil R, Djakovitch L, Hierso J.-C. Chem. Soc. Rev. 2012; 41: 3929
    • 2c Inman M, Moody C. J. Chem. Sci. 2013; 4: 29
    • 2d Guo T, Huang F, Yu L, Yu Z. Tetrahedron Lett. 2015; 56: 296
    • 3a Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 3b Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 3c Petrini M. Chem. Eur. J. 2017; 23: 16115
    • 3d Ping L, Chung DS, Bouffard J, Lee S.-G. Chem. Soc. Rev. 2017; 46: 4299
    • 4a Reay AJ, Hammarback LA, Bray JT. W, Sheridan T, Turnbull D, Whitwood AC, Fairlamb IJ. S. ACS Catal. 2017; 7: 5174
    • 4b Chen J, Wu J. Angew. Chem. Int. Ed. 2017; 56: 3951
    • 4c Yang Y, Gao P, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 3966
    • 4d Yang Y, Li R, Zhao Y, Zhao D, Shi Z. J. Am. Chem. Soc. 2016; 138: 8734
    • 4e Yang Y, Qiu X, Zhao Y, Mu Y, Shi Z. J. Am. Chem. Soc. 2016; 138: 495
    • 5a Inoue F, Saito T, Semba K, Nakao Y. Chem. Commun. 2017; 53: 4497
    • 5b Moselage M, Sauermann N, Richter SC, Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 6352
    • 5c Zhou X, Luo Y, Kong L, Xu Y, Zheng G, Lan Y, Li X. ACS Catal. 2017; 7: 7296
    • 5d Xu L, Zhang C, He Y, Tan L, Ma D. Angew. Chem. Int. Ed. 2016; 55: 321
    • 5e Lv J, Wang B, Yuan K, Wang Y, Jia Y. Org. Lett. 2017; 19: 3664
    • 6a Zhang Z.-Z, Liu B, Wang C.-Y, Shi B.-F. Org. Lett. 2015; 17: 4094
    • 6b Sauermann N, González MJ, Ackermann L. Org. Lett. 2015; 17: 5316
    • 7a Greulich TW, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 254
    • 7b Chen S, Feng B, Zheng X, Yin J, Yang S, You J. Org. Lett. 2017; 19: 2502
    • 7c Kim Y, Park J, Chang S. Org. Lett. 2016; 18: 1892
    • 8a Wu J.-C, Song R.-J, Wang Z.-Q, Huang X.-C, Xie Y.-X, Li J.-H. Angew. Chem. Int. Ed. 2012; 51: 3453
    • 8b Shi Q, Li P, Zhu X, Wang L. Green Chem. 2016; 18: 4916
    • 8c Jeong T, Han S, Mishra NK, Sharma S, Lee S.-Y, Oh JS, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2015; 80: 7243
    • 9a Xiao F, Xie H, Liu S, Deng G.-J. Adv. Synth. Catal. 2014; 356: 364
    • 9b Xiao F, Chen H, Xie H, Chen S, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50
    • 9c Gensch T, Klauck FJ. R, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 9d Gandeepan P, Koeller J, Ackermann L. ACS Catal. 2017; 7: 1030
    • 9e Maity S, Karmakar U, Samanta R. Chem. Commun. 2017; 53: 12197
    • 10a Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
    • 10b Gao X, Wu B, Huang W.-X, Chen M.-W, Zhou Y.-G. Angew. Chem. Int. Ed. 2015; 54: 11956
    • 10c Liang Y.-F, Massignan L, Liu W, Ackermann L. Chem. Eur. J. 2016; 22: 14856
    • 10d Cabrero-Antonino JR, Adam R, Junge K, Beller M. Chem. Sci. 2017; 8: 6439
    • 10e Yan S.-Y, Zhang Z.-Z, Shi B.-F. Chem. Commun. 2017; 53: 10287
    • 10f Xia J, Huang Z, Zhou X, Yang X, Wang F, Li X. Org. Lett. 2018; 20: 740
  • 11 Palmieri A, Petrini M. Chem. Rec. 2016; 16: 1353
    • 12a Yamada M, Ichikawa T, Li M, Itoh K, Tamura N, Kitazaki T. Bioorg. Med. Chem. 2008; 16: 3941
    • 12b Marsilje TH, Alper PB, Lu W, Mutnick D, Michellys P.-Y, He Y, Karanewsky DS, Chow D, Gerken A, Lao J, Kim M.-J, Seidel HM, Tian S.-S. Bioorg. Med. Chem. Lett. 2008; 18: 5259
    • 13a Lancianesi S, Palmieri A, Petrini M. Adv. Synth. Catal. 2012; 354: 3539
    • 13b Matsuzaki K, Furukawa T, Tokunaga E, Matsumoto T, Shiro M, Shibata N. Org. Lett. 2013; 15: 3282
    • 13c Luo J, Wu B, Chen M.-W, Jiang G.-F, Zhou Y.-G. Org. Lett. 2014; 16: 2578
    • 13d Liu Z.-S, Li W.-K, Kang T.-R, He L, Liu Q. Org. Lett. 2015; 17: 150
    • 13e Ohmatsu K, Furukawa Y, Nakaguro D, Ooi T. Chem. Lett. 2015; 44: 1350
    • 13f Chen P, Lu S.-M, Guo W, Liu Y, Li C. Chem. Commun. 2016; 52: 96
    • 14a Ballini R, Palmieri A, Petrini M, Torregiani E. Org. Lett. 2006; 8: 4093
    • 14b Huang W, Yang J, Li X, Yuan L, Ma Y, Zhou Q, Liang D. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 772
    • 15a Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257
    • 15b Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VY. Chem. Rev. 2015; 115: 2698
    • 15c Kaur T, Wadhwa P, Sharma A. RSC Adv. 2015; 5: 52769
    • 16a Liu J, Liu Z, Liao P, Bi X. Org. Lett. 2014; 16: 6204
    • 16b Chen J, Guo W, Wang Z, Hu L, Chen F, Xia Y. J. Org. Chem. 2016; 81: 5504
    • 16c Kadari L, Palakodety RK, Yallapragada LP. Org. Lett. 2017; 19: 2580
    • 16d Chu X.-Q, Ge D, Loh T.-P, Shen Z.-L. Org. Chem. Front. 2019; 6: 835
    • 17a Li H.-J, Wang R, Gao J, Wang Y.-Y, Luo D.-H, Wu Y.-C. Adv. Synth. Catal. 2015; 357: 1393
    • 17b Kadari L, Krishna PR, Prapurna YL. Adv. Synth. Catal. 2016; 358: 3863
    • 17c Ji Y.-Z, Wang M, Li H.-J, Liu Y, Wu Y.-C. Eur. J. Org. Chem. 2016; 23: 4077
  • 18 Dang P, Zeng W, Liang Y. Org. Lett. 2015; 17: 34
    • 19a Liu J, Liu Z, Wu N, Liao P, Bi X. Chem. Eur. J. 2014; 20: 2154
    • 19b Guerrero I, Segundo MS, Correa A. Chem. Commun. 2018; 54: 1627
    • 20a Zhang L.-B, Hao X.-Q, Zhang S.-K, Liu Z.-J, Zheng X.-X, Gong J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2015; 54: 272
    • 20b Du C, Li P.-X, Zhu X, Suo J.-F, Niu J.-L, Song M.-P. Angew. Chem. Int. Ed. 2016; 55: 13571
    • 20c Lu S, Zhu X, Li K, Guo Y.-J, Wang M.-D, Zhao X.-M, Hao X.-Q, Song M.-P. J. Org. Chem. 2016; 81: 8370
    • 20d Zhu X, Shen X.-J, Tian Z.-Y, Lu S, Tian L.-L, Liu W.-B, Song B, Hao X.-Q. J. Org. Chem. 2017; 82: 6022
    • 20e Guo Y.-J, Lu S, Tian L.-L, Huang E.-L, Hao X.-Q, Zhu X, Shao T, Song M.-P. J. Org. Chem. 2018; 83: 338
    • 20f Lu S, Tian L.-L, Cui T.-W, Zhu Y.-S, Zhu X, Hao X.-Q, Song M.-P. J. Org. Chem. 2018; 83: 13991
    • 20g Tian L.-L, Lu S, Zhang Z.-H, Huang E.-L, Yan H.-T, Zhu X, Hao X.-Q, Song M.-P. J. Org. Chem. 2019; 84: 5213
    • 20h Zhao X.-M, Huang E.-L, Zhu Y.-S, Li J, Song B, Zhu X, Hao X.-Q. Org. Biomol. Chem. 2019; 17: 4869
    • 21a Zhu X, Su J.-H, Du C, Wang Z.-L, Ren C.-J, Niu J.-L, Song M.-P. Org. Lett. 2017; 19: 596
    • 21b Liu S.-L, Li Y, Guo J.-R, Yang G.-C, Li X.-H, Gong J.-F, Song M.-P. Org. Lett. 2017; 19: 4042
    • 21c Wang Q, Zhi C.-L, Lu P.-P, Liu S, Zhu X, Hao X.-Q, Song M.-P. Adv. Synth. Catal. 2019; 361: 1253
  • 22 General Procedure for Preparation of Products 3 and 4To a 15 mL two-necked Schlenk tube fitted with glass stopper were added indoles 1 (0.1 mmol), TosMIC derivatives 2 (0.3 mmol), and FeSO4·7H2O (0.015 mmol, 4.2 mg) in a mixed solvent of H2O and PEG400 (v/v = 3:2, 2 mL) under an Ar atmosphere using the standard Schlenk techniques. The Schlenk tube was capped and heated at 110 °C for 24 h. The reaction mixture was then cooled to room temperature and concentrated directly. After removal of solvent, the residue was purified by preparative thin-layer chromatography (petroleum ether/EtOAc = 1:1) to give the desired product 3 and 4.4-Fluoro-3-(tosylmethyl)-1H-indole (3b)Brown solid (28.3 mg, 93%), mp 162–163 °C. 1H NMR (600 MHz, CDCl3): δ = 8.70 (s, 1 H), 7.59 (d, J = 7.4 Hz, 2 H), 7.18–7.16 (m, 3 H), 7.07–7.06 (m, 1 H), 7.01–6.98 (m, 1 H), 6.60 (t, J = 9.2 Hz, 1 H), 4.64 (s, 2 H), 2.36 (s, 3 H). 13C{1H} NMR (150 MHz, CDCl3): δ = 156.7 (d, J = 244.9 Hz), 144.5, 138.3 (d, J = 10.8 Hz), 135.5, 129.2, 128.5, 126.2, 122.8 (d, J = 8.0 Hz), 116.0 (d, J = 18.8 Hz), 107.6 (d, J = 3.6 Hz), 105.2 (d, J = 19.2 Hz), 100.6, 54.8, 21.6. 19F NMR (565 MHz, CDCl3): δ = –124.6. HRMS (positive ESI): m/z [M + Na]+ calcd for C16H14FNNaO2S+: 326.0621; found: 326.0621.
    • 23a Dance IG, Dean PA. W, Fisher KJ, Harris HH. Inorg. Chem. 2002; 41: 3560
    • 23b Halbauer K, Dönnecke D, Görls H, Imhof W. Z. Anorg. Allg. Chem. 2006; 632: 1477
    • 23c Tennent CL, Jones WL. Can. J. Chem. 2005; 83: 626