Synthesis 2019; 51(21): 3981-3988
DOI: 10.1055/s-0039-1690620
paper
© Georg Thieme Verlag Stuttgart · New York

A Metathetic Approach to [5/5/6] Aza-Tricyclic Core of Dendrobine, Kopsanone, and Lycopalhine A Type of Alkaloids

Sambasivarao Kotha
,
Sunil Pulletikurti
We are thankful to the Science and Engineering Research Board (EMR/2015/002053), New Delhi and CSIR [02(0272)/16/EMR-II], New Delhi for financial support. SP thanks UGC, New Delhi for financial support and the award of a SRF.
Further Information

Publication History

Received: 18 July 2019

Accepted after revision: 07 August 2019

Publication Date:
13 September 2019 (online)


Abstract

A concise synthetic approach to [5/5/6] tricyclic pyrrolidine core of dendrobine is reported. This methodology relies on the construction of β-hydroxylactams by NaBH4-I2 reduction followed by reaction of allylsilane with the aid of Lewis acid to generate alkenyl lactams in good yields. Further, ring-opening metathesis (ROM) followed by ring-closing metathesis (RCM) were used to assemble the [5/5/6] aza-tricyclic skeleton of dendrobine. This short synthetic route has been expanded to assemble tricyclic [5/5/8] system with pentenylboronic acid.

Supporting Information

 
  • References

    • 1a Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
    • 1b Inubushi Y, Sasaki Y, Tsuda Y, Yasui B, Konita T, Matsumoto J, Katarao E, Nakano J. Tetrahedron 1964; 20: 2007
    • 1c Chen KK, Chen AL. J. Biol. Chem. 1935; 111: 653
    • 2a Inubushi Y, Nakano J. Tetrahedron Lett. 1965; 2723
    • 2b Morita H, Fujiwara M, Yoshida N, Kobayashi JI. Tetrahedron 2000; 56: 5801
    • 3a Zeng T, Wu X.-Y, Yang S.-X, Lai W.-C, Shi S.-D, Zou Q, Liu Y, Li L.-M. J. Nat. Prod. 2017; 80: 864
    • 3b Yap W.-S, Gan C.-Y, Sim K.-S, Lim S.-H, Low Y.-Y, Kam T.-S. J. Nat. Prod. 2016; 79: 230
    • 3c Leng L, Zhou X, Liao Q, Wang F, Song H, Zhang D, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2017; 56: 3703
    • 4a Dong L.-B, Yang J, He J, Luo H.-R, Wu X.-D, Deng X, Peng L.-Y, Cheng X, Zhao Q.-S. Chem. Commun. 2012; 48: 9038
    • 4b Ochi Y, Yokoshima S, Fukuyama T. Org. Lett. 2016; 18: 1494
  • 5 Lee Y, Rochette EM, Kim J, Chen DY. K. Angew. Chem. Int. Ed. 2017; 56: 12250
  • 6 Williams BM, Trauner D. J. Org. Chem. 2018; 83: 3061
  • 7 Kotha S, Aswar VR. Org. Lett. 2016; 18: 1808
    • 8a Periasamy M, Thirumalaikumar M. J. Organomet. Chem. 2000; 609: 137
    • 8b Haldar P, Ray JK. Tetrahedron Lett. 2003; 44: 8229
  • 9 John JM, Takebayashi S, Dabral N, Miskolzie M, Bergens SH. J. Am. Chem. Soc. 2013; 135: 8578
    • 10a Yazici A, Wille U, Pyne SG. J. Org. Chem. 2016; 81: 1434
    • 10b Burgess KL, Lajkiewicz NJ, Sanyal A, Yan W, Snyder JK. Org. Lett. 2005; 7: 31
    • 10c Liu X, Snyder JK. J. Org. Chem. 2008; 73: 2935
    • 11a CCDC 1887403 (11c) and 1887402 (11d) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 11b NOE data of compound 11c and 11d are provided in the Supporting Information.
    • 12a Kotha S, Pulletikurti S. RSC Adv. 2018; 8: 14906
    • 12b Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 12c Connon SJ, Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
    • 12d Grela K. Beilstein J. Org. Chem. 2015; 11: 1639
    • 12e Randall ML, Snapper ML. J. Mol. Catal. A: Chem. 1998; 133: 29
    • 12f Acharyya RK, Rej RK, Nanda S. J. Org. Chem. 2018; 83: 2087
    • 12g Bose S, Ghosh M, Ghosh S. J. Org. Chem. 2012; 77: 6345

    • For previous work of our research group in the field, see:
    • 12h Kotha S, Rao NN, Ravikumar O, Sreevani G. Tetrahedron Lett. 2017; 58: 1283
    • 12i Kotha S, Chinnam AK, Shirbhate ME. J. Org. Chem. 2015; 80: 9141
    • 12j Kotha S, Manivannan E, Ganesh T, Sreenivasachary N, Deb A. Synlett 1999; 1618
    • 12k Kotha S, Sreenivasachary N. Bioorg. Med. Chem. Lett. 1998; 8: 257
    • 12l Kotha S, Waghule GT. J. Org. Chem. 2012; 77: 6314
    • 12m Kotha S, Bansal D, Singh K, Banerjee S. J. Organomet. Chem. 2011; 1856: 696
    • 12n Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9203
    • 12o Kotha S, Shah VR, Mandal K. Adv. Synth. Catal. 2007; 349: 1159
    • 13a Kotha S, Gunta R. Beilstein J. Org. Chem. 2016; 12: 1877
    • 13b Kotha S, Ravikumar O, Sreevani G. Tetrahedron 2016; 72: 6611

    • For previous work of our research group in the field of allylation, see:
    • 13c Kotha S, Behera M, Shah VR. Synlett 2005; 1877
    • 14a Batey RA, MacKay DB, Santhakumar V. J. Am. Chem. Soc. 1999; 121: 5075
    • 14b Wu P, Petersen MA, Cohrt AE, Petersen R, Clausen MH, Nielsen TE. Eur. J. Org. Chem. 2015; 2346
    • 14c Wu P, Nielsen TE. Chem. Rev. 2017; 117: 7811
  • 15 Rao HS. P, Rao AV. B. J. Org. Chem. 2015; 80: 1506
    • 16a Qi C, Gandon V, Leboeuf D. Adv. Synth. Catal. 2017; 359: 2671
    • 16b Maury J, Force G, Darses B, Leboeuf D. Adv. Synth. Catal. 2018; 360: 2752
  • 17 Lansakara AI, Mariappan SV. S, Pigge FC. J. Org. Chem. 2016; 81: 10266
    • 18a Andrade ES, Nunes RJ, Uieara M. Synth. Commun. 2004; 34: 3073
    • 18b Mikroyannidis JA. J. Appl. Polym. Sci. 1993; 47: 1915