Synthesis 2019; 51(22): 4284-4290
DOI: 10.1055/s-0039-1690613
paper
© Georg Thieme Verlag Stuttgart · New York

Practical Application of the Aqueous ‘Sulfonyl-Azide-Free’ (SAFE) Diazo Transfer Protocol to Less α-C–H Acidic Ketones and Esters

Dmitry Dar’in
,
Grigory Kantin
,
Mikhail Krasavin
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru   URL: http://www.krasavin-group.org/
› Author Affiliations
This research was supported by the Russian Science Foundation (project grant 19-75-30008).
Further Information

Publication History

Received: 29 June 2017

Accepted after revision: 31.072019

Publication Date:
28 August 2019 (online)


Abstract

The earlier described ‘sulfonyl-azide-free’ (‘SAFE’) protocol for diazo transfer to CH-acidic 1,3-dicarbonyl compounds (and their similarly activated congeners) has been extended to the less reactive monocarbonyl substrates, which previously required a separate activation step. Formylation in situ, followed by the addition of an optimized amount of the ‘SAFE cocktail’ (obtained by mixing sodium azide, potassium carbonate, and m-carboxybenzenesulfonyl chloride in water) led to the formation of the desired diazo compounds, which were isolated by extraction in moderate to excellent yields, and, in most cases, with no need for additional purification.

Supporting Information

 
  • References

    • 1a Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
    • 1b Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds . John Wiley & Sons, Inc; New York: 1998
  • 2 Regitz M. Justus Liebigs Ann. Chem. 1964; 676: 101
  • 3 Bollinger FW, Tuma LD. Synlett 1996; 407
  • 4 Curphey TJ. Org. Prep. Proced. Int. 1981; 13: 112
  • 5 Dar’in D, Kantin G, Krasavin M. Chem. Commun. 2019; 55: 5239
  • 6 Clapham B. Curr. Opin. Drug Discovery Dev. 2004; 7: 813
  • 7 Regitz M, Rueter J. Chem. Ber. 1968; 101: 1263
  • 9 Heydt H. Sci. Synth. 2004; 27: 843
  • 10 Shu W.-M, Ma J.-R, Zheng K.-L, Sun H.-Y, Wang M, Yang Y, Wu A.-X. Tetrahedron 2014; 70: 9321
  • 11 Danheiser RL, Miller RF, Brisbois RG, Park SZ. J. Org. Chem. 1990; 55: 1959
  • 12 Martin LJ, Marzinzik AL, Ley SV, Baxendale IR. Org. Lett. 2011; 13: 320
  • 13 Davies HM. L, Chennamadhavuni S, Bakin A. US Pat. Appl. 20140249199, 2014 ; Chem. Abstr. 2016, 167, 175774.
  • 14 Pfeiffer P, Enders E. Chem. Ber. 1951; 84: 247
  • 15 Preobrazhenskii NA, Beer AA. Zh. Obshch. Khim. 1945; 15: 667
  • 16 Sezer O, Dabak K, Anac O, Akar A. Helv. Chim. Acta 1996; 80: 960
  • 17 Nikolaev VA, Utkin PY, Korobitsyna IK. Zh. Org. Khim. 1989; 25: 1176
  • 18 Nicolle SM, Moody CJ. Chem. Eur. J. 2014; 20: 4420
  • 19 Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
  • 20 Hahn ND, Nieger M, Doetz KH. J. Organomet. Chem. 2004; 689: 2662
  • 21 Duerr H, Hauck G, Brueck W, Kober H. Z. Naturforsch., B 1981; 36: 1149
  • 22 Keipour H, Jalba A, Delage-Laurin L, Ollevier T. J. Org. Chem. 2017; 82: 3000
  • 23 Hu M, Ni C, Li L, Han Y, Hu J. J. Am. Chem. Soc. 2015; 137: 14496
  • 24 Huang L, Wulff WD. J. Am. Chem. Soc. 2011; 133: 8892
  • 25 Matheis C, Krause T, Bragoni V, Goossen LJ. Chem. Eur. J. 2016; 22: 12270
  • 26 Chiles HM, Noyes WA. J. Am. Chem. Soc. 1922; 44: 1798