Synlett 2019; 30(19): 2153-2156
DOI: 10.1055/s-0039-1690217
letter
© Georg Thieme Verlag Stuttgart · New York

Direct Synthesis of N-Functionalized Dipropargylamine Linkers as Models for Use in Peptide Stapling

a   Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   Email: r-andrea@lab.u-ryukyu.ac.jp   Email: spring@ch.cam.ac.uk
,
Ryan N. Rutherford
b   Science Education Academy of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
,
Kozo Fukumoto
c   University of the Ryukyus, Faculty of Education, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
,
Dominique Kunciw
a   Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   Email: r-andrea@lab.u-ryukyu.ac.jp   Email: spring@ch.cam.ac.uk
,
a   Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   Email: r-andrea@lab.u-ryukyu.ac.jp   Email: spring@ch.cam.ac.uk
,
a   Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK   Email: r-andrea@lab.u-ryukyu.ac.jp   Email: spring@ch.cam.ac.uk
› Author Affiliations
Financial support for this work was provided by the EPSRC, BBSRC, MRC, Wellcome Trust, ERC (FP7/2007–2013; 279337/DOS and Marie Curie Fellowship IEF-2013-627253), and by the Japan Science and Technology Agency (JST; ‘Global Science Campus’).
Further Information

Publication History

Received: 06 September 2019

Accepted after revision: 07 October 2019

Publication Date:
23 October 2019 (online)


Abstract

N-Substituted dipropargylamines that are suitable as functionalized linkers for peptide stapling can be synthesized in one step under mild conditions from commercially available starting materials (41% to quantitative yield).

Supporting Information

 
  • References and Notes

  • 1 Zorzi A, Deyle K, Heinis C. Curr. Opin. Chem. Biol. 2017; 38: 24
  • 2 Iegre J, Ahmed NS, Gaynord JS, Wu Y, Herlihy KM, Tan YS, Lopes-Pires ME, Jha R, Lau YH, Sore HF, Verma C, O’Donovan DH, Pugh N, Spring DR. Chem. Sci. 2018; 9: 4638
    • 3a Iegre J, Gaynord JS, Robertson NS, Sore HF, Hyvönen M, Spring DR. Adv. Ther. 2018; 1: 1800052
    • 3b Li X, Zou Y, Hu H.-G. Chin. Chem. Lett. 2018; 29: 1088
  • 4 Lau YH, Wu Y, de Andrade P, Galloway WR. J. D, Spring DR. Nat. Protoc. 2015; 10: 585
  • 5 Lau YH, de Andrade P, Quah S.-T, Rossmann M, Laraia L, Sköld N, Sum TJ, Rowling PJ. E, Joseph TL, Verma C, Hyvönen M, Itzhaki LS, Venkitaraman AR, Brown CJ, Lane DP, Spring DR. Chem. Sci. 2014; 5: 1804
  • 6 Zhang L, Navaratna T, Liao J, Thurber GM. Bioconjugate Chem. 2015; 26: 329
  • 7 Wiedmann MM, Tan YS, Wu Y, Aibara S, Xu W, Sore HF, Verma CS, Itzhaki L, Stewart M, Brenton JD, Spring DR. Angew. Chem. Int. Ed. 2017; 56: 524
  • 8 Wu Y, Villa F, Maman J, Lau YH, Dobnikar L, Simon AC, Labib K, Spring DR, Pellegrini L. Angew. Chem. Int. Ed. 2017; 56: 12866
  • 9 Xu W, Lau YH, Fischer G, Tan YS, Chattopadhyay A, de la Roche M, Hyvönen M, Verma C, Spring DR, Itzhaki LS. J. Am. Chem. Soc. 2017; 139: 2245
  • 10 Torres O, Yüksel D, Bernardina M, Kumar K, Bong D. ChemBioChem 2008; 9: 1701
  • 11 Haridas V. Eur. J. Org. Chem. 2009; 5112
  • 12 Moses JE, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
  • 13 Hädicke A, Blume A. Biochim. Biophys. Acta, Biomembr. 2017; 1859: 415
    • 14a Zhang L, Falla TJ. Expert Opin. Invest. Drugs 2004; 13: 97
    • 14b Giuliani A, Pirri G, Nicoletto S. Cent. Eur. J. Biol. 2007; 2: 1
    • 15a Chauvelier J. Bull. Soc. Chim. Fr. 1954; 736
    • 15b Walker FH. (Stauffer Chemical Co) FR2250740, 1975
    • 15c Dai H, Liu G, Zhang X, Yan H, Lu C. Organometallics 2016; 35: 1488
    • 15d Nelson JH, Jonassen HB, Roundhill DM. Inorg. Chem. 1969; 8: 2591
    • 15e Trofimov BA, Parshina LN, Lavrov VI, Sobenina LN, Mikhaleva AI, Shevchenko SG, Korostova SE, Vins VV, Fel’dman VD, Shishov NI, Solodovnikov YuA. J. Appl. Chem. USSR (Engl. Transl.) 1992; 65: 337-340
    • 15f Jin P.-Y, Jin P, Ruan Y.-A, Ju Y, Zhao Y.-F. Synlett 2007; 3003
    • 15g Yamada M, Aoki K. (Nippon Paint Co Ltd) US5196583, 1993
    • 15h Carr BA, Jadhav VR, Kenski DM, Tellers DM, Willingham AT. (Sirna Therapeutics, Inc.) WO2013/165816, 2013
    • 15i Tellers D, Colletti SL, Dudkin V, Aaronson J, Momose A, Tucker TJ, Yuan Y, Calati KB, Tian L, Parmar RG, Shaw AW, Wang W, Storr RA, Busuek M, Kowtoniuk RA. (Sirna Therapeutics, Inc.) WO2013/166155, 2013
    • 15j Tellers D, Colletti SL, Dudkin V, Ikemoto N, Liao H, Zhu M, Yuan Y, Wang L, Truong Q, Shaw A, Pei T, Parish C. (Sirna Therapeutics, Inc.) WO2013/166121, 2013
    • 15k Colletti SL, Tucker TJ, Tellers DM, Kim B, Burke R, Calati KB, Stanton MG, Parmar RG, Aaronson JG, Wang W. (Merck Sharp & Dohme Corp.) WO2015/069587, 2015
    • 15l Colletti SL, Tucker TJ, Tellers DM, Kim B, Burke R, Calati KB, Stanton MG, Parmar RG, Aaronson JG, Wang W. (Merck Sharp & Dohme Corp.) WO2015/069586, 2015
  • 16 Yanagi A, Watanabe Y, Narabu S.-i. (Nihon Bayer Agrochem K. K.) US5767286, 1998
  • 17 Bürglová K, Moitra N, Hodacová J, Cattoën X, Man MW. C. J. Org. Chem. 2011; 76: 7326
    • 18a Hayashi K, Hiki S, Kumagai T, Nagao Y. Heterocycles 2002; 56: 433
    • 18b Lee KC, Lee J, Kim J.-S, Park J, Lee YJ, Kim BI, An G, Lim S. KR101494429, 2015
    • 18c Tóth G, Varga Z. (Pozitron-Diagnosztika Kft.) WO2018/189560, 2018
  • 19 N-Ethoxycarbonyldipropargylamine (1): Ethyl chloroformate (56 μL, 0.54 mmol, 1.0 equiv) was added to a solution of dipropargylamine (103 μL, 1.08 mmol, 2.0 equiv) in acetone (10 mL) at room temperature. A white precipitate formed almost immediately. The mixture was stirred at room temperature for 2.5 h. After this time, TLC analysis (silica gel; PE/EtOAc = 4:1, KMnO4 stain) indicated complete consumption of starting materials. The mixture was filtered over Celite® and solvent was removed under reduced pressure. The residue was dissolved in dichloromethane (20 mL) and extracted with water (2 × 20 mL). The organic layer was separated, dried over MgSO4, filtered and evaporated to afford 1 (144 mg, 0.87 mmol, quant.) as a pale-yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 1.28 (t, J = 7.2 Hz, 3 H, CH2CH 3), 2.24 (t, J = 2.4 Hz, 2 H, 2 × C≡CH), 4.19 (q, J = 7.2 Hz, 2 H, CH 2CH3), 4.22 (br s, 4 H, 2 × CH2C≡C). 13C NMR (100 MHz, CDCl3): δ = 13.2, 36.3, 62.4, 73.6, 79.2, 155.2. HRMS (ESI+): m/z [M + 1] calcd for C9H12O2N: 166.0863; found: 166.0865.
    • 20a Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 20b Ghosh AK, Brindisi M. J. Med. Chem. 2015; 58: 2895
  • 21 Lau NY. H. Dissertation . University of Cambridge; UK: 2014: 34
  • 22 Synthesis of 2 from glycine tert-butyl ester and propargyl bromide is also known, but the yield was not reported, see: Mock JN, Taliaferro JP, Lu X, Patel SK, Cummings BS, Long TE. Bioorg. Med. Chem. Lett. 2012; 22: 4854
  • 23 Murty M. SR, Jyothirmai B, Krishna PR, Yadav JS. J. Synth. Commun. 2003; 33: 2483
  • 24 Pawar SS, Dekhane DV, Thore SN, Shingare MS. J. Heterocycl. Chem. 2008; 45: 1869
  • 25 Kral V, Arnold Z. Collect. Czech. Chem. Commun. 1980; 45: 92