RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(24): 4576-4581
DOI: 10.1055/s-0039-1690206
DOI: 10.1055/s-0039-1690206
paper
Sumanene Hexaester: An Electron-Deficient Buckybowl
This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas ‘π-Figuration’ (no. 26102002 for H.S. and no. 26102008 for T.F.) and ‘Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials’ from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).Weitere Informationen
Publikationsverlauf
Received: 19. August 2019
Accepted after revision: 12. September 2019
Publikationsdatum:
30. September 2019 (online)
Abstract
2,3,5,6,8,9-Hexakis(phenoxycarbonyl)sumanene, a hexasubstituted sumanene with CO2Ph groups at the peripheral aromatic carbons, was successfully prepared in good yield by Pd-catalyzed phenoxycarbonylation using a solvent of phenyl formate. Single-crystal X-ray structural analysis of this compound revealed the formation of a one-dimensional columnar structure, stacked in a staggered manner. The UV and emission spectra of this showed clear red-shifts compared with those of pristine sumanene, indicating the extension of the conjugation system.
Key words
sumanene - buckybowls - palladium catalysis - phenoxycarbonylation - electron-deficient polycyclic aromatic hydrocarbons - columnar packing structureSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690206.
- Supporting Information
-
References
- 1a Scott LT, Bronstein HE, Preda DV, Ansems RB. M, Bratcher MS, Hagen S. Pure Appl. Chem. 1999; 71: 209
- 1b Watson MD, Fechtenkötter A, Müllen K. Chem. Rev. 2001; 101: 1267
- 1c Tsefrikas VM, Scott LT. Chem. Rev. 2006; 106: 4868
- 1d Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
- 1e Sygula A. Eur. J. Org. Chem. 2011; 1611
- 1f Chen L, Hernandez Y, Feng X, Müllen K. Angew. Chem. Int. Ed. 2012; 51: 7640
- 1g Sun Z, Ye Q, Chi C, Wu J. Chem. Soc. Rev. 2012; 41: 7857
- 1h Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
- 1i Segawa Y, Ito H, Itami K. Nat. Rev. Mater. 2016; 1: 15002
- 2a Rohr U, Schlichting P, Böhm A, Gross M, Meerholz K, Bräuchle C, Müllen K. Angew. Chem. Int. Ed. 1998; 37: 1434
- 2b Langhals H, Kirner S. Eur. J. Org. Chem. 2000; 365
- 2c Hirayama S, Sakai H, Araki Y, Tanaka M, Imakawa M, Wada T, Takenobu T, Hasobe T. Chem. Eur. J. 2014; 20: 9081
- 2d Vollbrecht J, Bock H, Wiebeler C, Schumacher S, Kitzerow H. Chem. Eur. J. 2014; 20: 12026
- 2e Vollbrecht J, Wiebeler C, Neuba A, Bock H, Schumacher S, Kitzerow H. J. Phys. Chem. C 2016; 120: 7839
- 2f Vollbrecht J, Blazy S, Dierks P, Peurifoy S, Bock H, Kitzerow H. ChemPhysChem 2017; 18: 2024
- 3a Hassheider T, Benning SA, Kitzerow H.-S, Achard M.-F, Bock H. Angew. Chem. Int. Ed. 2001; 40: 2060
- 3b Bock H, Rajaoarivelo M, Clavaguera S, Grelet É. Eur. J. Org. Chem. 2006; 2889
- 3c Grelet É, Bock H. Europhys. Lett. 2006; 73: 712
- 3d Saïdi-Besbes S, Grelet É, Bock H. Angew. Chem. Int. Ed. 2006; 45: 1783
- 3e Alibert-Fouet A, Seguy I, Bobo J.-F, Destruel P, Bock H. Chem. Eur. J. 2007; 13: 1746
- 3f Grelet E, Dardel S, Bock H, Goldmann M, Lacaze E, Nallet F. Eur. Phys. J. E 2010; 31: 343
- 3g Osawa T, Kajitani T, Hashizume D, Ohsumi H, Sasaki S, Takata M, Koizumi Y, Saeki A, Seki S, Fukushima T, Aida T. Angew. Chem. Int. Ed. 2012; 51: 7990
- 3h Ferreira M, Moreira TS, Cristiano R, Gallardo H, Bentaleb A, Dechambenoit P, Hillard EA, Durola F, Bock H. Chem. Eur. J. 2018; 24: 2214
- 4a Scott LT. Pure Appl. Chem. 1996; 68: 291
- 4b Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
- 4c Amaya T, Hirao T. Chem. Commun. 2011; 47: 10524
- 4d Higashibayashi S, Sakurai H. Chem. Lett. 2011; 40: 122
- 4e Schmidt BM, Lentz D. Chem. Lett. 2014; 43: 171
- 4f Saito M, Shinokubo H, Sakurai H. Mater. Chem. Front. 2018; 2: 635
- 5a Imamura K, Takimiya K, Aso Y, Otsubo T. Chem. Commun. 1999; 1859
- 5b Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
- 5c Saito M, Tanikawa T, Tajima T, Guo JD, Nagase S. Tetrahedron Lett. 2010; 51: 672
- 5d Furukawa S, Kobayashi J, Kawashima T. Dalton Trans. 2010; 39: 9329
- 5e Tanikawa T, Saito M, Guo JD, Nagase S. Org. Biomol. Chem. 2011; 9: 1731
- 5f Tan Q, Higashibayashi S, Karanjit S, Sakurai H. Nat. Commun. 2012; 3: 891
- 5g Tanikawa T, Saito M, Guo JD, Nagase S, Minoura M. Eur. J. Org. Chem. 2012; 7135
- 5h Li X, Zhu Y, Shao J, Wang B, Zhang S, Shao Y, Jin X, Yao X, Fang R, Shao X. Angew. Chem. Int. Ed. 2014; 53: 535
- 5i Ito S, Tokimatsu Y, Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
- 5j Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat. Commun. 2015; 6: 8215
- 5k Wang S, Li X, Hou X, Sun Y, Shao X. Chem. Commun. 2016; 52: 14486
- 5l Hou X, Zhu Y, Qin Y, Chen L, Li X, Zhang H.-L, Xu W, Zhu D, Shao X. Chem. Commun. 2017; 53: 1546
- 5m Furukawa S, Suda Y, Kobayashi J, Kawashima T, Tada T, Fujii S, Kiguchi M, Saito M. J. Am. Chem. Soc. 2017; 139: 5787
- 5n Kaewmati P, Tan Q, Higashibayashi S, Yakiyama Y, Sakurai H. Chem. Lett. 2017; 46: 146
- 5o Tan Q, Zhou D, Zhang T, Liu B, Xu B. Chem. Commun. 2017; 53: 10279
- 5p Tan Q, Kaewmati P, Higashibayashi S, Kawano M, Yakiyama Y, Sakurai H. Bull. Chem. Soc. Jpn. 2018; 91: 531
- 5q Wang S, Yan C, Shang J, Wang W, Yuan C, Zhang H.-L, Shao X. Angew. Chem. Int. Ed. 2019; 58: 3819
- 6a Seiders TJ, Elliott EL, Grube GH, Siegel JS. J. Am. Chem. Soc. 1999; 121: 7804
- 6b Sygula A, Rabideau PW. J. Am. Chem. Soc. 2000; 122: 6323
- 6c Xu G, Sygula A, Marcinow Z, Rabideau PW. Tetrahedron Lett. 2000; 41: 9931
- 6d Grube GH, Elliott EL, Steffens RJ, Jones CS, Baldridge KK, Siegel JS. Org. Lett. 2003; 5: 713
- 6e Wu Y.-T, Bandera D, Maag R, Linden A, Baldridge KK, Siegel JS. J. Am. Chem. Soc. 2008; 130: 10729
- 6f Baldridge KK, Hardcastle KI, Seiders TJ, Siegel JS. Org. Biomol. Chem. 2010; 8: 53
- 6g Pogoreltsev A, Solel E, Pappo D, Keinan E. Chem. Commun. 2012; 48: 5425
- 7a Sakurai H, Daiko T, Hirao T. Science 2003; 301: 1878
- 7b Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T. J. Am. Chem. Soc. 2005; 127: 11580
- 7c Amaya T, Nakata T, Hirao T. J. Am. Chem. Soc. 2009; 131: 10810
- 7d Amaya T, Hifumi M, Okada M, Shimizu Y, Moriuchi T, Segawa K, Ando Y, Hirao T. J. Org. Chem. 2011; 76: 8049
- 7e Amaya T, Mori K, Wu H.-L, Ishida S, Nakamura J, Murata K, Hirao T. Chem. Commun. 2007; 1902
- 7f Higashibayashi S, Nasir Baig RB, Morita Y, Sakurai H. Chem. Lett. 2012; 41: 84
- 7g Higashibayashi S, Tsuruoka R, Soujanya Y, Purushotham U, Sastry GN, Seki S, Ishikawa T, Toyota S, Sakurai H. Bull. Chem. Soc. Jpn. 2012; 85: 450
- 7h Schmidt BM, Topolinski B, Higashibayashi S, Kojima T, Kawano M, Lentz D, Sakurai H. Chem. Eur. J. 2013; 19: 3282
- 7i Higashibayashi S, Onogi S, Srivastava HK, Sastry GN, Wu Y.-T, Sakurai H. Angew. Chem. Int. Ed. 2013; 52: 7314
- 7j Amaya T, Ito T, Hirao T. Eur. J. Org. Chem. 2014; 3531
- 7k Amaya T, Ito T, Katoh S, Hirao T. Tetrahedron 2015; 71: 5906
- 7l Yakiyama Y, Wang Y, Hatano S, Abe M, Sakurai H. Chem. Asian J. 2019; 14: 1844
- 8a Shrestha BB, Karanjit S, Panda G, Higashibayashi S, Sakurai H. Chem. Lett. 2013; 42: 386
- 8b Amaya T, Kobayashi K, Hirao T. Asian J. Org. Chem. 2013; 2: 642
- 8c Shrestha BB, Higashibayashi S, Sakurai H. Beilstein J. Org. Chem. 2014; 10: 841
- 8d Shrestha BB, Karanjit S, Higashibayashi S, Amaya T, Hirao T, Sakurai H. Asian J. Org. Chem. 2015; 4: 62
- 8e Ngamsomprasert N, Panda G, Higashibayashi S, Sakurai H. J. Org. Chem. 2016; 81: 11978
- 8f Ngamsomprasert N, Yakiyama Y, Sakurai H. Chem. Lett. 2017; 46: 446
- 8g Toda H, Yakiyama Y, Shoji Y, Ishiwari F, Fukushima T, Sakurai H. Chem. Lett. 2017; 46: 1368
- 8h Shoji Y, Kajitani T, Ishiwari F, Ding Q, Sato H, Anetai H, Akutagawa T, Sakurai H, Fukushima T. Chem. Sci. 2017; 8: 8405
- 8i Hisaki I, Toda H, Sato H, Tohnai N, Sakurai H. Angew. Chem. Int. Ed. 2017; 56: 15294
- 9a Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
- 9b Fujihara T, Hosoki T, Katafuchi Y, Iwai T, Terao J, Tsuji Y. Chem. Commun. 2012; 48: 8012
- 10 Mebs S, Weber M, Luger P, Schmidt BM, Sakurai H, Higashibayashi S, Onogi S, Lentz D. Org. Biomol. Chem. 2012; 10: 2218
- 11 Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ. Chem. Phys. Lett. 2013; 578: 156
- 12 DFT/TD-DFT calculations of 5 for assignment of the transitions corresponding to UV absorption bands did not converge, probably due to the flexibility of the phenoxycarbonyl groups.
- 13 Zanello P, Fedi S, Fabrizi de Biani F, Giorgi G, Amaya T, Sakane H, Hirao T. Dalton Trans. 2009; 9192
Selected reviews on PAHs:
Selected reviews on buckybowls:
Functionalization at benzylic carbons:
Functionalization at aromatic carbons: