Synlett 2020; 31(01): 45-50
DOI: 10.1055/s-0039-1690196
cluster – 9th Pacific Symposium on Radical Chemistry
© Georg Thieme Verlag Stuttgart · New York

Samarium Diiodide Catalyzed Radical Cascade Cyclizations that Construct Quaternary Stereocenters

,
,

Subject Editor: David Nicewicz and Corey StephensonSupport for this work was provided by the UK Engineering and Physical Sciences Research Council [EPSRC; EP/M005062/01 (Postdoctoral Fellowship to H.-M.H. and EPSRC Established Career Fellowship to D.J.P.)] and the EPSRC UK National EPR Facility and Service at the University of Manchester (NS/A000055/1).
Further Information

Publication History

Received: 25 July 2019

Accepted after revision: 15 August 2019

Publication Date:
28 August 2019 (online)


Published as part of the Cluster 9th Pacific Symposium on Radical Chemistry

Abstract

SmI2-catalyzed radical cascade cyclizations were used to generate complex carbocyclic products bearing quaternary stereocenters with high selectivity. Bicyclic scaffolds containing four contiguous stereocenters and one quaternary stereocenter were obtained in excellent yields (up to 99%) and with high diastereocontrol by using 5 mol% of SmI2 at ambient temperature in the absence of co-reductants or additives. Mechanistic studies support a radical relay mechanism.

Supporting Information

 
  • References and Notes

    • 1a Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 1b Ardkhean R, Caputo DF. J, Morrow SM, Shi H, Xiong Y, Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
    • 1c Tietze LF. Chem. Rev. 1996; 96: 115
  • 2 Delidovich I, Palkovits R. Green Chem. 2016; 18: 590
    • 3a Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
    • 3b Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
    • 3c Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 3d Sebren LJ, Devery JJ. III, Stephenson CR. J. ACS Catal. 2014; 4: 703
    • 3e Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
  • 4 Steven A, Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
    • 5a Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 5b Liu Y, Han S.-J, Liu W.-B, Stoltz BM. Acc. Chem. Res. 2015; 48: 740
    • 5c Quasdorf KW, Overman LE. Nature 2014; 516: 181
    • 6a Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
    • 6b Müller DS, Untiedt NL, Dieskau AP, Lackner GL, Overman LE. J. Am. Chem. Soc. 2015; 137: 660

      For reviews on the use of samarium diiodide, see:
    • 7a Just-Baringo X, Procter DJ. Acc. Chem. Res. 2015; 48: 1263
    • 7b Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 7c Szostak M, Spain M, Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
    • 7d Szostak M, Spain M, Parmar D, Procter DJ. Chem. Commun. 2012; 48: 330
    • 7e Szostak M, Procter DJ. Angew. Chem. Int. Ed. 2012; 51: 9238
    • 7f Beemelmanns C, Reissig H.-U. Chem. Soc. Rev. 2011; 40: 2199
    • 7g Beemelmanns C, Reissig H.-U. Pure Appl. Chem. 2011; 83: 507
    • 7h Procter DJ, Flowers RA. II, Skrydstrup T. Organic Synthesis using Samarium Diiodide: A Practical Guide . Royal Society of Chemistry; Cambridge: 2009
    • 7i Flowers RA. II. Synlett 2008; 1427
    • 7j Kagan HB. Tetrahedron 2003; 59: 10351
    • 7k Krief A, Laval A.-M. Chem. Rev. 1999; 99: 745
    • 7l Molander GA, Harris CR. Chem. Rev. 1996; 96: 307

      For recent examples, see:
    • 8a Huang H.-M, McDouall JJ. W, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 4995
    • 8b Plesniak MP, Garduño-Castro MH, Lenz P, Just-Baringo X, Procter DJ. Nat. Commun. 2018; 9: 4802
    • 8c Kern N, Plesniak MP, McDouall JJ. W, Procter DJ. Nat. Chem. 2017; 9: 1198
    • 8d Huang H.-M, Procter DJ. Angew. Chem. Int. Ed. 2017; 56: 14262
    • 8e Huang H.-M, Procter DJ. J. Am. Chem. Soc. 2017; 139: 1661
    • 8f Huang H.-M, Bonilla P, Procter DJ. Org. Biomol. Chem. 2017; 15: 4159
    • 8g Ruscoe RE, Huang H, Flitsch S, Procter DJ. Chem. Eur. J. 2016; 22: 116
    • 8h Huang H.-M, Procter DJ. J. Am. Chem. Soc. 2016; 138: 7770
    • 8i Rao CN, Lentz D, Reissig H.-U. Angew. Chem. Int. Ed. 2015; 54: 2750
    • 8j Rao CN, Bentz C, Reissig H.-U. Chem. Eur. J. 2015; 21: 15951
    • 8k Fazakerley NJ, Helm MD, Procter DJ. Chem. Eur. J. 2013; 19: 6718
    • 8l Breitler S, Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 11168
    • 8m Parmar D, Matsubara H, Price K, Spain M, Procter DJ. J. Am. Chem. Soc. 2012; 134: 12751
    • 8n Sautier B, Lyons SE, Webb MR, Procter DJ. Org. Lett. 2012; 14: 146
    • 8o Li Z, Nakashige M, Chain WJ. J. Am. Chem. Soc. 2011; 133: 6553
    • 8p Cha JY, Yeoman JT. S, Reisman SE. J. Am. Chem. Soc. 2011; 133: 14964
    • 8q Coote SC, Quenum S, Procter DJ. Org. Biomol. Chem. 2011; 9: 5104
    • 8r Parmar D, Price K, Spain M, Matsubara H, Bradley PA, Procter DJ. J. Am. Chem. Soc. 2011; 133: 2418
    • 8s Beemelmanns C, Reissig H.-U. Angew. Chem. Int. Ed. 2010; 49: 8021
    • 8t Helm MD, Da Silva M, Sucunza D, Findley TJ. K, Procter DJ. Angew. Chem. Int. Ed. 2009; 48: 9315
    • 8u Reisman SE, Ready JM, Weiss MM, Hasuoka A, Hirata M, Tamaki K, Ovaska TV, Smith CJ, Wood JL. J. Am. Chem. Soc. 2008; 130: 2087
    • 9a Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 9b Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
  • 10 Corey EJ, Zheng GZ. Tetrahedron Lett. 1997; 38: 2045
    • 11a Nomura R, Matsuno T, Endo T. J. Am. Chem. Soc. 1996; 118: 11666
    • 11b Aspinall HC, Greeves N, Valla C. Org. Lett. 2005; 7: 1919
    • 11c Ueda T, Kanomata N, Machida H. Org. Lett. 2005; 7: 2365
    • 11d Maity S, Flowers RA. II. J. Am. Chem. Soc. 2019; 141: 3207
    • 12a Hélion F, Namy J.-L. J. Org. Chem. 1999; 64: 2944
    • 12b Lannou M.-I, Hélion F, Namy J.-L. Tetrahedron 2003; 59: 10551
    • 13a Sun L, Sahloul K, Mellah M. ACS Catal. 2013; 3: 2568
    • 13b Zhang YF, Mellah M. ACS Catal. 2017; 7: 8480

      For a recent review of catalytic radical relays, see:
    • 14a Huang H.-M., Garduño-Castro M. H., Morrill C., Procter D. J.; Chem. Soc. Rev.; DOI: 10.1039/c8cs00947c.

    • For selected examples involving ketyl radicals, see:
    • 14b Lu Z, Shen M, Yoon TP. J. Am. Chem. Soc. 2011; 133: 1162
    • 14c Amador AG, Sherbrook EM, Yoon TP. J. Am. Chem. Soc. 2016; 138: 4722
    • 14d Amador AG, Sherbrook EM, Lu Z, Yoon T. Synthesis 2018; 50: 539
    • 14e Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
    • 14f Hao W, Harenberg JH, Wu X, MacMillan SN, Lin S. J. Am. Chem. Soc. 2018; 140: 3514
    • 14g Huang X, Lin J, Shen T, Harms K, Marchini M, Ceroni P, Meggers E. Angew. Chem. Int. Ed. 2018; 57: 5454
  • 15 Huang H.-M, McDouall JJ. W, Procter DJ. Nat. Catal. 2019; 2: 211
  • 16 Gansäuer A, Behlendorf M, von Laufenberg D, Fleckhaus A, Kube C, Sadasivam DV, Flowers II RA. Angew. Chem. Int. Ed. 2012; 51: 4739
  • 17 Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151
  • 18 SmI2-Catalyzed Cyclization Cascade; General Procedure An oven-dried vial containing a stirrer bar was charged with the appropriate substrate 1 (0.1 mmol, 1 equiv) then placed under a positive pressure of N2. THF (0.025 M, 4.0 mL) was added, and the solution was stirred at r.t. Fresh SmI2 solution (typically, 5%, 0.1 M, 0.05 mL) was added and, after the specified time (typically, 20 min), the mixture was filtered through a pad of silica gel, which was washed with CH2Cl2 (3 × 5 mL). The solution was concentrated in vacuo to give product 2 typically without the need for further purification. In some cases, products required purification by chromatography (silica gel). Diethyl rac-(3aS,4S,5S,6aR)-5-Benzoyl-4-methyl-4-phenylhexahydropentalene-2,2(1H)-dicarboxylate (2a) Colorless oil; yield: 43.2 mg (96%). IR (neat): 2981, 1724, 1446, 1252, 1182, 907, 710 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.50–7.40 (m, 2 H, ArH), 7.39–7.32 (m, 1 H, ArH), 7.28–7.10 (m, 7 H, ArH), 4.23–4.13 [m, 5 H, 2 × CH2CH3 and C(O)CH], 3.09 [dt, J = 10.9, 9.3 Hz, 1 H, CCH2CHC(Me)Ph], 2.97–2.86 (m, 1 H, CCH2CH), 2.66 (dd, J = 13.4, 7.9 Hz, 1 H, 1 H from CCH2CHCH2), 2.27 [d, J = 9.3 Hz, 2 H, CCH2CHC(Me)Ph], 2.24–2.11 (m, 2 H, CCH2CHCH2), 2.01 (dd, J = 13.3, 8.1 Hz, 1 H, 1 H from CCH2CHCH2), 1.29–1.19 (m, 9 H, 2 × CH2CH3 and CH3). 13C NMR (101 MHz, CDCl3): δ = 201.2 (C=O), 172.3 [OC(O)], 171.6 [OC(O)], 149.6 (ArCq), 137.9 (ArCq), 132.5 (ArCH), 128.4 (2 × ArCH), 128.4 (2 × ArCH), 128.1 (2 × ArCH), 126.2 (2 × ArCH), 126.1 (ArCH), 64.0 (Cq), 62.0 [C(O)CH], 61.51 (CH2CH3), 61.5 (CH2CH3), 57.4 [CCH2CHC(Me)Ph], 50.2 (Cq), 42.3 (CCH2CH), 40.1 (CCH2CHCH2), 35.5 [CCH2CHC(Me)Ph], 34.5 (CCH2CH), 19.6 (CH3), 14.2 (CH2CH3), 14.1 (CH2CH3). MS (ESI+): m/z (%): 471.2 [M + Na]+. HRMS (ESI+): m/z [M + Na]+ calcd for C28H32NaO5: 471.2142; Found: 471.2136. Diethyl rac-(3aR,4S,5S,6aS)-5-Benzoyl-4-ethyl-4-phenylhexahydropentalene- 2,2(1H)-dicarboxylate (2t) Colorless oil; yield: 44.1 mg (95%). IR (neat): 2970, 1726, 1674, 1455, 1365, 1217, 908, 762 cm−1. 1H NMR (400 MHz, CDCl3): δ = 7.96–7.88 (m, 2 H, ArH), 7.60–7.52 (m, 1 H, ArH), 7.47 (dd, J = 8.3, 6.9 Hz, 2 H, ArH), 7.38–7.29 (m, 4 H, ArH), 7.23–7.17 (m, 1 H, ArH), 4.32–4.12 [m, 5 H, 2 × CH2CH3 and C(O)CH], 3.11 [dt, J = 12.1, 7.7 Hz, 1 H, CCH2CHC(Et)Ph], 3.03–2.87 (m, 1 H, CCH2CH), 2.74–2.56 [m, 2 H, 1 H from CCH2CHC(Et)Ph and 1 H from CCH2CHCH2], 2.48 (dd, J = 13.6, 5.1 Hz, 1 H, 1 H from CCH2CHCH2), 2.35 [ddd, J = 12.7, 7.1, 1.3 Hz, 1 H, 1 H from CCH2CHC(Et)Ph], 2.06–1.89 (m, 2 H, CCH2CHCH2), 1.71 (qd, J = 6.8, 4.2 Hz, 2 H, PhCCH2CH3), 1.29 (dt, J = 15.5, 7.1 Hz, 6 H, 2 × CH2CH3), 0.47 (t, J = 7.2 Hz, 3 H, PhCCH2CH3). 13C NMR (101 MHz, CDCl3): δ = 203.9 (C=O), 172.9 [OC(O)], 172.0 [OC(O)], 149.1 (ArCq), 139.4 (ArCq), 132.9 (ArCH), 128.7 (2 × ArCH), 128.6 (2 × ArCH), 128.5 (2 × ArCH), 126.5 (2 × ArCH), 126.0 (ArCH), 61.7 (Cq), 61.5 (CH2CH3), 61.4 (CH2CH3), 59.0 [C(O)CH], 57.9 (Cq), 51.2 [CCH2CHC(Et)Ph], 43.0 (CCH2CH), 39.3 (CCH2CHCH2), 36.1 (CCH2CH), 35.1 [CCH2CHC(Et)Ph], 28.5 (PhCCH2CH3), 14.3 (CH2CH3), 14.2 (CH2CH3), 10.6 (PhCCH2CH3). MS (ESI+): m/z (%): 485.3 [M + Na] + . HRMS (ESI + ): m/z [M + H]+ Calcd for C29H35O5: 463.2479; Found: 463.2474.
  • 19 Schönherr H, Cernak T. Angew. Chem. Int. Ed. 2013; 52: 12256
  • 20 CCDC 1915447 contains the supplementary crystallographic data for compound 2w. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 22 For a review of the chemistry of samarium enolates, see: Rudkin IM, Miller LC, Procter DJ. Spec. Period. Rep.: Organomet. Chem. 2008; 34: 19