Synthesis 2019; 51(22): 4239-4248
DOI: 10.1055/s-0039-1690190
paper
© Georg Thieme Verlag Stuttgart · New York

Pd/PTABS: An Efficient Catalytic System for the Aminocarbonylation of a Sugar-Protected Nucleoside

Shatrughn Bhilare
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Jagrut Shah
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Vinayak Gaikwad
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Gaurav Gupta
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Yogesh S. Sanghvi
b   Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, USA
,
Bhalchandra M. Bhanage
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
,
Anant R. Kapdi
a   Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai-400019, India   Email: ar.kapdi@ictmumbai.edu.in
› Author Affiliations
S.B. is grateful to the University Grants Commission, India for a UGC-SAP fellowship (SRF).V.G. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India, for providing a Senior Research Fellowship (SRF).
Further Information

Publication History

Received: 01 July 2019

Accepted after revision: 05 August 2019

Publication Date:
05 September 2019 (online)


Abstract

A highly efficient and mild protocol for the aminocarbonylation of a nucleoside is developed by employing palladium/(1,3,5-triaza-7-phosphaadamantan-1-ium-1-yl)butane-1-sulfonate (Pd/PTABS) as the catalytic system. The developed aminocarbonylation methodology employs CO gas at a relatively low temperature of 60 °C and is suitable for a wide range of amines, including (heteroaryl)benzylic, aliphatic acyclic, alicyclic and secondary amines. This protocol is also utilized for the synthesis of a sangivamycin precursor by carrying out the Pd-catalyzed amination and aminocarbonylation simultaneously. The utility of this protocol is further demonstrated by the synthesis of the drugs moclobemide and nikethamide.

Supporting Information

 
  • References

  • 1 Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food Chem. 2018; 66: 8914
  • 2 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
  • 3 Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 4 Barnard CF. J. Organometallics 2008; 27: 5402
  • 5 Gadge ST, Bhanage BM. RSC Adv. 2014; 4: 10367
  • 6 Schneider W, Diller W. Phosgene. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2000
  • 7 Trost BM. Acc. Chem. Res. 2002; 35: 695
  • 8 Trost BM. Angew. Chem., Int. Ed. Engl. 1995; 34: 259
  • 9 Liu J, Dong K, Franke R, Neumann H, Jackstell R, Beller M. J. Am. Chem. Soc. 2018; 140: 10282
  • 10 Skoda-Földes R, Kollár L. In Sustainable Synthesis of Pharmaceuticals: Using Transition Metal Complexes as Catalysts . Pereira MM, Calvete MJ. F. The Royal Society of Chemistry; Cambridge: 2018: 40
  • 11 Wu X.-F, Fang X, Wu L, Jackstell R, Neumann H, Beller M. Acc. Chem. Res. 2014; 47: 1041
  • 12 Friis SD, Skrydstrup T, Buchwald SL. Org. Lett. 2014; 16: 4296
  • 13 Peng J.-B, Geng H.-Q, Wu X.-F. Chem 2019; 5: 526
  • 14 Marshall JA, Wolf MA. J. Org. Chem. 1996; 61: 3238
  • 15 Wakao K, Watanabe T, Takadama T, Ui S, Shigemi Z, Kagawa H, Higashi C, Ohga R, Taira T, Fujimuro M. Biochem. Biophys. Res. Commun. 2014; 444: 135
  • 16 Saito Y, Kato K, Umezawa K. Nucleosides Nucleotides 1999; 18: 713
  • 17 Couban S, Benevolo G, Donnellan W, Cultrera J, Koschmieder S, Verstovsek S, Hooper G, Hertig C, Tandon M, Dimier N, Malhi V, Passamonti F. J. Hematol. Oncol. 2018; 11: 122
  • 18 Liu S, Yu C, Tian H, Hu T, He Y, Li Z, Tan W, Zhang L, Duan L. J. Plant Growth Regul. 2018; 37: 707
  • 19 Nair M, Jeevanandan G, Mohan M. Asian J. Pharm. Clin. Res. 2018; 11: 295
  • 20 Mahrouse MA, Lamie NT. Microchem. J. 2019; 147: 691
  • 21 Kapdi AR, Sanghvi YS. The Future of Drug Discovery: The Importance of Modified Nucleosides, Nucleotides and Oligonucleotides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Latest Trends in Palladium Chemistry; Elsevier; Amsterdam: 2018: 1
  • 22 Gayakhe V, Bhilare S, Yashmeen A, Kapdi AR, Fairlamb IJ. S. Transition-Metal Catalyzed Modifications of Nucleosides. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides. Kapdi AR, Maiti D, Sanghvi YS. Latest Trends in Palladium Chemistry; Elsevier; Amsterdam: 2018: 167
  • 23 Annby U, Rehnberg N, Samuelsson J, Teichert O. Org. Process Res. Dev. 2001; 5: 568
  • 24 Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
  • 25 Beller M, Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds. Springer-Verlag; Berlin: 2013: 147
  • 26 Naigre R, Chenal T, Ciprés I, Kalck P, Daran J.-C, Vaissermann J. J. Organomet. Chem. 1994; 480: 91
  • 27 Tang W, Patel ND, Wei X, Byrne D, Chitroda A, Narayanan B, Sienkiewicz A, Nummy LJ, Sarvestani M, Ma S, Grinberg N, Lee H, Kim S, Li Z, Spinelli E, Yang B.-S, Yee N, Senanayake CH. Org. Process Res. Dev. 2013; 17: 382
  • 28 Smith AB, Kürti L, Davulcu AH, Cho YS. Org. Process Res. Dev. 2007; 11: 19
  • 29 Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE. J. Am. Chem. Soc. 2010; 132: 4141
  • 30 Otani Y, Liu X, Ohno H, Wang S, Zhai L, Su A, Kawahata M, Yamaguchi K, Ohwada T. Nat. Commun. 2019; 10: 461
  • 31 Vaught JD, Dewey T, Eaton BE. J. Am. Chem. Soc. 2004; 126: 11231
  • 32 Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D. PLoS One 2010; 5: e15004
  • 33 Rohloff JC, Fowler C, Ream B, Carter JD, Wardle G, Fitzwater T. Nucleosides, Nucleotides Nucleic Acids 2015; 34: 180
  • 34 Ito T, Ueno Y, Komatsu Y, Matsuda A. Nucleic Acids Res. 2003; 31: 2514
  • 35 Dewey TM, Mundt A, Crouch GJ, Zyzniewski MC, Eaton BE. J. Am. Chem. Soc. 1995; 117: 8474
  • 36 Bhilare S, Gayakhe V, Ardhapure AV, Sanghvi YS, Schulzke C, Borozdina Y, Kapdi AR. RSC Adv. 2016; 6: 83820
  • 37 Nucleic Acids in Chemistry and Biology . Blackburn GM, Gait MJ, Loakes D, Williams DM. The Royal Society of Chemistry; Cambridge: 2006
  • 38 Gayakhe V, Ardhapure A, Kapdi AR, Sanghvi YS, Serrano JL, García L, Pérez J, García J, Sánchez G, Fischer C, Schulzke C. J. Org. Chem. 2016; 81: 2713
  • 39 Murthy Bandaru SS, Bhilare S, Chrysochos N, Gayakhe V, Trentin I, Schulzke C, Kapdi AR. Org. Lett. 2018; 20: 473
  • 40 Bhilare S, Murthy Bandaru SS. M, Kapdi AR, Sanghvi YS, Schulzke C. Curr. Protoc. Nucleic Acid Chem. 2018; 74: e58
  • 41 Bhilare S, Murthy Bandaru SS, Shah J, Chrysochos N, Schulzke C, Sanghvi YS, Kapdi AR. J. Org. Chem. 2018; 83: 13088
  • 42 Bhujabal YB, Vadagaonkar KS, Kapdi AR. Asian J. Org. Chem. 2019; 8: 289
  • 43 Veliath E, Gaffney BL, Jones RA. Nucleosides, Nucleotides and Nucleic Acids 2014; 33: 40
  • 44 Coelho MC. A, Vasquez ML, Wildemberg LE, Vázquez-Borrego MC, Bitana L, da Silva Camacho AH, Silva D, Ogino LL, Ventura N, Sánchez-Sánchez R, Chimelli L, Kasuki L, Luque RM, Gadelha MR. Sci. Rep. 2019; 9: 1122
  • 45 Gorman SH. J. Chromatogr. B: Biomed. Sci. Appl. 1999; 730: 1
  • 46 Berger ML, Schweifer A, Rebernik P, Hammerschmidt F. Bioorg. Med. Chem. 2009; 17: 3456
  • 47 Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez A.-M, Morales-Figueroa G.-E, Arias-Montaño J.-A. Mol. Pharmacol. 2016; 90: 649
  • 48 Baranov D, Lynch MJ, Curtis AC, Carollo AR, Douglass CR, Mateo-Tejada AM, Jonas DM. Chem. Mater. 2019; 31: 1223
  • 49 Perlikova P, Hocek M. Med. Res. Rev. 2017; 37: 1429
  • 50 Khalaf AI, Huggan JK, Suckling CJ, Gibson CL, Stewart K, Giordani F, Barrett MP, Wong PE, Barrack KL, Hunter WN. J. Med. Chem. 2014; 57: 6479
  • 51 Fulton B, Benfield P. Drugs 1996; 52: 450
  • 52 Li M, Zhang H, Chen B, Wu Y, Guan L. Sci. Rep. 2018; 8: 3991
  • 53 Allen CL, Davulcu S, Williams JM. J. Org. Lett. 2010; 12: 5096
  • 54 Gockel SN, Hull KL. Org. Lett. 2015; 17: 3236