Synthesis 2019; 51(22): 4183-4197
DOI: 10.1055/s-0039-1690185
paper
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective [2,3]-Sigmatropic Rearrangement of N-Allyl Ammonium Ylides

Aleksandra Murre
,
Kristin Erkman
,
Sandra Kaabel
,
Ivar Järving
,
Tõnis Kanger
Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia   Email: tonis.kanger@taltech.ee
› Author Affiliations
The authors thank the Estonian Ministry of Education and Research (grants No. IUT 19-32, IUT 19-9, and PUT 1468) and the Centre of Excellence in Molecular Cell Engineering (2014-2020.4.01.15-0013) for financial support.
Further Information

Publication History

Received: 03 May 2019

Accepted after revision: 02 August 2019

Publication Date:
28 August 2019 (online)


Abstract

A rapid and diastereoselective method was developed for the [2,3]-sigmatropic rearrangement of N-allyl ammonium ylides, affording products in up to 95% isolated yields and up to 97:3 dr; most of the desired products were formed within 1 minute. For the asymmetric reaction, a chiral auxiliary was introduced to the starting compound, affording the rearrangement product with high diastereoselectivities.

Supporting Information

 
  • References

  • 1 Present address: S. Kaabel, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.

    • For a recent review, see:
    • 2a Wolfe JP. In Comprehensive Organic Synthesis, 2nd ed., Vol. 3. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 1038
    • 2b West TH, Spoehrle SS. M, Kasten K, Taylor JE, Smith AD. ACS Catal. 2015; 5: 7446
  • 3 Ošeka M, Kimm M, Kaabel S, Järving I, Rissanen K, Kanger T. Org. Lett. 2016; 18: 1358
  • 4 Ošeka M, Kimm M, Järving I, Lippur K, Kanger T. J. Org. Chem. 2017; 82: 2889
  • 5 Drouillat B, Wright K, Quinodoz P, Marrot J, Couty F. J. Org. Chem. 2015; 80: 6936
    • 6a Åhman J, Somfai P. J. Am. Chem. Soc. 1994; 116: 9781
    • 6b Åhman J, Jarevång T, Somfai P. J. Org. Chem. 1996; 61: 8148
    • 7a Anderson JC, Siddons DG, Smith SC, Swarbrick ME. J. Org. Chem. 1996; 61: 4820
    • 7b Anderson JC, Smith SC, Swarbrick ME. J. Chem. Soc., Perkin Trans. 1 1997; 1517
    • 7c Anderson JC, Flaherty A, Swarbrick ME. J. Org. Chem. 2000; 65: 9152
    • 7d Anderson JC, Davies EA. Tetrahedron 2010; 66: 6300
  • 8 Murata Y, Nakai T. Chem. Lett. 1990; 2069
  • 9 Coldham I, Middleton ML, Taylor PL. J. Chem. Soc., Perkin Trans. 1 1998; 2817
    • 10a Blid J, Somfai P. Tetrahedron Lett. 2003; 44: 3159
    • 10b Blid J, Brandt P, Somfai P. J. Org. Chem. 2004; 69: 3043
  • 11 Stevens TS, Creighton EM, Gordon AB, MacNicol M. J. Chem. Soc. 1928; 3193
  • 14 Jemison RW, Ollis WD. J. Chem. Soc., Chem. Commun. 1969; 294
  • 15 Soheili A, Tambar UK. J. Am. Chem. Soc. 2011; 133: 12956
  • 16 Zhang J, Chen Z.-X, Du T, Li B, Gu Y, Tian S.-K. Org. Lett. 2016; 18: 4872
  • 17 Hiroi K, Nakazawa K. Chem. Lett. 1980; 1077
  • 18 Tayama E, Naganuma N, Iwamoto H, Hasegawa E. Chem. Commun. 2014; 50: 6860
  • 19 Anderson JC, Ford JG, Whiting M. Org. Biomol. Chem. 2005; 3: 3734
  • 20 Glaeske KW, West FG. Org. Lett. 1999; 1: 31
  • 21 Blid J, Panknin O, Somfai P. J. Am. Chem. Soc. 2005; 127: 9352
    • 22a Workman JA, Garrido NP, Sançon J, Roberts E, Wessel HP, Sweeney JB. J. Am. Chem. Soc. 2005; 127: 1066
    • 22b Sweeney JB, Tavassoli A, Workman JA. Tetrahedron 2006; 62: 11506
    • 23a West TH, Daniels DS, Slawin AM, Smith AD. J. Am. Chem. Soc. 2014; 136: 4476
    • 23b West TH, Walden DM, Taylor JE, Brueckner AC, Johnston RC, Cheong PH.-Y, Lloyd-Jones GC, Smith AD. J. Am. Chem. Soc. 2017; 139: 4366
    • 23c West TH, Spoehrle SS. M, Smith AD. Tetrahedron 2017; 73: 4138

      For selected references, see:
    • 24a Mageswaran S, Ollis WD, Sutherland IO. J. Chem. Soc., Chem. Commun. 1973; 656
    • 24b Mageswaran S, Ollis WD, Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1981; 1953
    • 24c Hayes JF, Tavassoli A, Sweeney JB. Synlett 2000; 1208
  • 25 Markó IE. In Comprehensive Organic Synthesis, Vol. 3. Trost BM, Fleming I. Pergamon; Oxford: 1991: 913
  • 26 Davies SG, Hunter IA, Nicholson RL, Roberts PM, Savory ED, Smith AD. Tetrahedron 2004; 60: 7553
  • 27 Evans DA, Britton TC. J. Am. Chem. Soc. 1987; 109: 6881
  • 28 Prashad M, Shieh W.-C, Liu Y. Tetrahedron 2016; 72: 17
  • 29 Stevens JM, Parra-Rivera AC, Dixon DD, Beutner GL, DelMonte AJ, Frantz DE, Janey JM, Paulson J, Talley MR. J. Org. Chem. 2018; 83: 14245
  • 30 Guissart C, Barros A, Barata LR, Evano G. Org. Lett. 2018; 20: 5098
  • 31 Szostak M, Spain M, Eberhart AJ, Procter DJ. J. Am. Chem. Soc. 2014; 136: 2268
  • 32 Kanomata N, Maruyama S, Tomono K, Anada S. Tetrahedron Lett. 2003; 44: 3599
  • 33 Devaraj NK, Perrin CL. Chem. Sci. 2018; 9: 1789
  • 34 Hirata G, Satomura H, Kumagae H, Shimizu A, Onodera G, Kimura M. Org. Lett. 2017; 19: 6148
  • 35 Antonsson T, Moberg C. Organometallics 1985; 4: 1083
  • 36 Sirlin C, Chengebroyen J, Konrath R, Ebeling G, Raad I, Dupont J, Paschaki M, Kotzyba-Hibert F, Harf-Monteil C, Pfeffer M. Eur. J. Org. Chem. 2004; 1724
  • 37 Valenta V, Vlková M, Valchář M, Dobrovský K, Polívka Z. Collect. Czech. Chem. Commun. 1991; 56: 1525
  • 38 Dias LC, Melgar GZ, Jardim LS. A. Tetrahedron Lett. 2005; 46: 4427
  • 39 Agasimundin YS, Oakes FT, Leonard NJ. J. Org. Chem. 1985; 50: 2474
  • 40 Lücke D, Linne Y, Hempel K, Kalesse M. Org. Lett. 2018; 20: 4475
  • 41 Taaning RH, Thim L, Karaffa J, Campaña AG, Hansen A.-M, Skrydstrup T. Tetrahedron 2008; 64: 11884
  • 42 Gerpe A, Boiani L, Hernández P, Sortino M, Zacchino S, González M, Cerecetto H. Eur. J. Med. Chem. 2010; 45: 2154