Synthesis 2019; 51(21): 3989-3997
DOI: 10.1055/s-0039-1690179
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Aza-polyquinanes via Fischer Indolization and Ring-Rearrangement Metathesis as Key Steps

Sambasivarao Kotha
Department of Chemistry, Indian Institute of Technology-Bombay, Powai, India   Email: srk@chem.iitb.ac.in
,
Ramakrishna Reddy Keesari
,
Saima Ansari
› Author Affiliations
We thank the Defence Research and Development Organisation (DRDO; Project Code. RD/0117-ARDB000-004), New Delhi, India for financial assistance. S.K. thanks the Department of Science and Technology for the award of a J.C. Bose fellowship (SR/S2/JCB-33/2010), Praj industries, Pune, for Pramod Chaudhari Chair Professorship (Green Chemistry). R.R.K. thanks the Defence Research and Development Organisation (DRDO), New Delhi, India. S.A. thanks the University Grants Commission (UGC) for a fellowship.
Further Information

Publication History

Received: 03 May 2019

Accepted after revision: 25 July 2019

Publication Date:
26 August 2019 (online)


Abstract

Herein, we describe a simple synthetic strategy to assemble aza-polyquinane systems containing an indole motif by employing the Fischer indolization and ring-rearrangement metathesis as key steps. The precursor used here is exo-dicyclopentadienone, which is derived from less explored exo-dicyclopentadiene. By using this approach, several aza-polyquinanes that contain indole units and fused medium rings (eight- and nine-membered rings) were synthesized in good yields.

Supporting Information

 
  • References

    • 1a Paquette LA, Doherty AM. Polyquinane Chemistry . Springer-Verlag; New York: 1987
    • 1b Kotha S, Sivakumar R, Damodharan L, Pattabhi V. Tetrahedron Lett. 2002; 43: 4523
    • 1c Qiu Y, Lan W.-J, Li H.-J, Chen L.-P. Molecules 2018; 23: 2095
    • 1d Kutateladze AG, Kuznetsov DM. J. Org. Chem. 2017; 82: 10795
    • 1e Sternbach DD, Ensinger CL. J. Org. Chem. 1990; 55: 2725
    • 1f Kang T, Song SB, Kim W.-Y, Kim BG, Lee H.-Y. J. Am. Chem. Soc. 2014; 136: 10274
    • 2a Mehta G, Rao KS. J. Org. Chem. 1985; 50: 5537
    • 2b Lannoye G, Cook JM. Tetrahedron Lett. 1988; 29: 171
    • 2c Lannoye G, Sambasivarao K, Wehrli S, Cook JM, Weiss U. J. Org. Chem. 1988; 53: 2327
  • 3 Mehta G, Srikrishna A. Chem. Rev. 1997; 97: 671
    • 4a Mascal M, Hafezi N, Meher NK, Fettinger JC. J. Am. Chem. Soc. 2008; 130: 13532
    • 4b Hext NM, Hansen J, Blake AJ, Hibbs DE, Hursthouse MB, Shishkin OV, Mascal M. J. Org. Chem. 1998; 63: 6016
    • 4c Gurjar MK, Ravindranadh SV, Kumar P. Chem. Commun. 2001; 917
    • 4d Clive DL. J, Cole DC, Tao Y. J. Org. Chem. 1994; 59: 1396
    • 4e An J, Lu L.-Q, Yang Q.-Q, Wang T, Xiao W.-J. Org. Lett. 2013; 15: 542
    • 4f Kotha S, Aswar VR. Org. Lett. 2016; 18: 1808
    • 4g See also ref. 1d.
  • 5 Gharpure SJ, Niranjana P, Porwal SK. Org. Lett. 2012; 14: 5476
    • 6a Paquette LA, Tae J. Tetrahedron Lett. 1997; 38: 3151
    • 6b Kotha S, Chinnam AK. Heterocycles 2015; 90: 690
    • 6c Kotha S, Chinnam AK, Ali R. Beilstein J. Org. Chem. 2015; 11: 1123
    • 7a Stanton JL, Ackerman MH. J. Med. Chem. 1983; 26: 986
    • 7b Zhang Q, Mándi A, Li S, Chen Y, Zhang W, Tian X, Zhang H, Li H, Zhang W, Zhang S, Ju J, Kurtán T, Zhang C. Eur. J. Org. Chem. 2012; 5256
    • 7c Komoda T, Shinoda Y, Nakatsuka S. Biosci., Biotechnol., Biochem. 2003; 67: 659
    • 7d Prasad BA. B, Buechele AE, Gilbertson SR. Org. Lett. 2010; 12: 5422
    • 8a Wenzel AG, O’Leary DJ, Khosravi E, Grubbs RH. Handbook of Metathesis, 2nd Ed. Wiley-VCH; Weinheim: 2015
    • 8b Grubbs RH. Catalyst Development and Mechanism . In Handbook of Metathesis, Vol. 1. Wiley-VCH; Weinheim: 2003
    • 9a Kotha S, Manivannan E, Ganesh T, Sreenivasachary N, Deb A. Synlett 1999; 1618
    • 9b Kotha S, Sreenivasachary N. Bioorg. Med. Chem. Lett. 1998; 8: 257
    • 9c Kotha S, Meshram M, Tiwari A. Chem. Soc. Rev. 2009; 38: 2065
    • 9d Kotha S, Singh K. Eur. J. Org. Chem. 2007; 5909
    • 10a Kotha S, Meshram M, Khedkar P, Banerjee S, Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
    • 10b Kotha S, Gunta R. J. Org. Chem. 2017; 82: 8527
    • 10c Mondal S, Malik CK, Ghosh S. Tetrahedron Lett. 2008; 49: 5649
    • 10d Maity S, Ghosh S. Tetrahedron Lett. 2008; 49: 1133
    • 10e Malik CK, Ghosh S. Org. Lett. 2007; 9: 2537
  • 11 Khoury PR, Goddard JD, Tam W. Tetrahedron 2004; 60: 8103
    • 12a Kotha S, Ravikumar O. Eur. J. Org. Chem. 2014; 5582
    • 12b Kotha S, Ravikumar O. Tetrahedron Lett. 2016; 57: 1994
    • 12c Kotha S, Ravikumar O, Majhi J. Beilstein J. Org. Chem. 2015; 11: 1503
    • 12d Ghosh S, Banerjee S. ARKIVOC 2002; (vii): 8
  • 13 Gharpure SJ, Porwal SK. Org. Prep. Proced. Int. 2013; 45: 81
  • 14 Kotha S, Chakkapalli C. Chem. Rec. 2017; 17: 1039
    • 15a Bartlett PD, Goldstein IS. J. Am. Chem. Soc. 1947; 69: 2553
    • 15b Bartlett PD, Schneider A. J. Am. Chem. Soc. 1946; 68: 6
    • 15c Nelson GL, Kuo C.-L. Synthesis 1975; 105
    • 15d Bakke JM, Lundquist M. Acta Chem. Scand. 1990; 44: 860
    • 15e Nakagawa K, Iwase S, Ishii Y, Hamanaka S, Okawa M. Bull. Chem. Soc. Jpn. 1977; 50: 2391
    • 16a Cox O, Rivera LA. Synth. Commun. 1978; 8: 261
    • 16b Woodward RB, Katz TJ. Tetrahedron 1959; 5: 70
    • 16c Rosenblum M. J. Am. Chem. Soc. 1957; 79: 3179
    • 16d Shibuya K. Synth. Commun. 1994; 24: 2923
    • 16e Baldwin JE. J. Org. Chem. 1966; 31: 2441
    • 17a Lange JH. M, Klunder AJ. H, Zwanenburg B. Tetrahedron 1991; 47: 1509
    • 17b Comins DL, Brooks CA, Ingalls CL. J. Org. Chem. 2001; 66: 2181
  • 18 Gore S, Baskaran S, König B. Org. Lett. 2012; 14: 4568
  • 19 CCDC 1886978 (19b), 1887151 (19c), 1886977 (10a) and 1887288 (11a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.