Synlett 2019; 30(15): 1830-1834
DOI: 10.1055/s-0039-1690163
letter
© Georg Thieme Verlag Stuttgart · New York

Molecular Iodine Catalyzed Hydroxysulfenylation of Alkenes with Disulfides in Aerobic Conditions

Bang-qing Ni
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: byron_ni@yeah.net   Email: niutf@jiangnan.edu.cn
,
Yunpeng He
,
Xuejiao Rong
,
Teng-fei Niu
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. of China   Email: byron_ni@yeah.net   Email: niutf@jiangnan.edu.cn
› Author Affiliations
The authors gratefully acknowledge the National Natural Science Foundation of China (no. 21808085), the China Postdoctoral Science Foundation (2018M630519), and the Natural Science Foundation of Jiangsu Province, China (BK20160164).
Further Information

Publication History

Received: 09 June 2019

Accepted after revision: 31 July 2019

Publication Date:
09 August 2019 (online)


Abstract

An environmentally friendly and efficient strategy has been developed for preparing β-hydroxy sulfides by a molecular-iodine-catalyzed radical reaction. This reaction involves hydroxysulfenylation of alkenes with disulfides in aqueous solution. Air is used as the oxidant without any additives. Control experiments indicated that the oxygen atom of products might come from O2. Both aryl alkenes and aliphatic alkenes were well tolerated in this transformation and afforded the corresponding products in moderate to high yields.

Supporting Information

 
  • References and Notes

    • 1a Mitsudome T, Takahashi Y, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2014; 53: 8348
    • 1b Sahu D, Dey S, Pathak T, Ganguly B. Org. Lett. 2014; 16: 2100
  • 2 Luly JR, Yi N, Soderquist J, Stein H, Cohen J, Perun TJ, Plattner J. J. Med. Chem. 1987; 30: 1609
  • 3 Corey EJ, Clark DA, Goto G, Marfat A, Mioskowski C, Samuelsson B, Hammarstrom S. J. Am. Chem. Soc. 1980; 102: 1436
    • 4a Chandrasekhar S, Reddy CR, Babu BN, Chandrasekhar G. Tetrahedron Lett. 2002; 43: 3801
    • 4b Fan R.-H, Hou X.-L. J. Org. Chem. 2003; 68: 726
    • 4c Pironti V, Colonna S. Green Chem. 2005; 7: 43
    • 4d Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. J. Org. Chem. 2004; 69: 8780
    • 4e Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. J. Org. Chem. 2003; 68: 8248
    • 4f Kamal A, Reddy DR. ; Rajendar J. Mol. Catal. A: Chem. 2007; 272: 26
    • 4g Su W, Chen J, Wu H, Jin C. J. Org. Chem. 2007; 72: 4524
    • 4h Chen J, Wu H, Jin C, Zhang X, Xie Y, Su W. Green Chem. 2006; 8: 330
    • 5a Singh AK, Chawla R, Keshari T, Yadav VK, Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
    • 5b Lanke SR, Bhanage BM. Catal. Commun. 2013; 41: 29
    • 5c Wang H, Lu Q, Liu L, Liu C, Kai C, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
    • 5d Xi H, Deng B, Zong Z, Lu S, Li Z. Org. Lett. 2015; 17: 1180
    • 5e Zhou S.-F, Pan X.-Q, Zhou Z.-H, Shoberu A, Zhou J.-P. J. Org. Chem. 2015; 80: 3682
    • 5f Wang Y, Jiang W, Huo C. J. Org. Chem. 2017; 82: 10628
    • 5g Huo C, Wang Y, Yuan Y, Chen F, Tang J. Chem. Commun. 2016; 52: 7233
    • 5h Zhang B, Liu T, Bian Y, Lu T, Feng J. ACS Sustainable Chem. Eng. 2017; 6: 2651
    • 6a Devan N, Sridhar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
    • 6b Yoon NM, Choi J, Ahn JH. J. Org. Chem. 1994; 59: 3490
    • 6c Dowsland J, McKerlie F, Procter DJ. Tetrahedron Lett. 2000; 41: 4923
    • 6d Ranu BC, Mandal T. Can. J. Chem. 2006; 84: 762
    • 6e Khodaei MM, Khosropour AR, Ghozati K. J. Braz. Chem. Soc. 2005; 16: 673
  • 7 Movassagh B, Navidi M. Tetrahedron Lett. 2008; 49: 6712
  • 8 Yadav VK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2015; 56: 2892
  • 9 Zhang R, Jin S, Wan Y, Lin S, Yan S. Tetrahedron Lett. 2018; 59: 841
    • 10a Liu D, Lei A. Chem. Asian J. 2015; 10: 806
    • 10b Parvatkar PT, Parameswaran PS, Tilve SG. Chem. Eur. J. 2012; 18: 5460
    • 10c Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
    • 10d Tian J.-S, Ng KW. J, Wong J.-R, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 9105
    • 10e Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
    • 10f Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
  • 11 Tehri P, Aegurula B, Peddinti RK. Tetrahedron Lett. 2017; 58: 2062
  • 12 da Silva G, Hamdan MR, Bozzelli JW. J. Chem. Theory Comput. 2009; 5: 3185
  • 13 β-Hydroxy Sulfides 3; General ProcedureA 20 mL reaction vessel equipped with a magnetic stirring bar was charged with the appropriate disulfide 1 (0.5 mmol), alkyne 2 (1 mmol), I2 (20 mol%), and 1:1 MeCN–H2O (2 mL), and the mixture was stirred under air at 60 °C for 2 h. Surplus I2 was quenched with sat. aq Na2S2O3, and the mixture was extracted with EtOAc (3 × 10 mL). The organic phases were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, hexanes–EtOAc (4:1)].2-[(4-Chlorophenyl)thio]-1-(4-fluorophenyl)ethanol (3b)Colorless oil; yield: 101.5 mg (72%); 1H NMR (400 MHz, CDCl3): δ = 7.51–7.16 (m, 6 H), 7.10–7.04 (m, 2 H), 4.86–4.71 (m, 1 H), 3.50–3.09 (m, 2 H), 2.81–2.53 (m, 1 H). 13C NMR (101 MHz, CDCl3): δ = 163.7, 161.3, 137.7, 133.4, 133.1, 131.7, 129.3, 127.53, 115.5, 71.2, 44.3. 19F NMR (376 MHz, CDCl3): δ = –114.0. ESI-MS: m/z = 283 [M + 1]+. Anal. Calcd for C14H12ClFOS: C, 59.47; H, 4.28. Found: C, 59.30; H, 4.39.