Synlett 2019; 30(16): 1914-1918
DOI: 10.1055/s-0039-1690162
letter
© Georg Thieme Verlag Stuttgart · New York

Carboxylative Cyclization of Propargylic Amines with Carbon Dioxide­ Catalyzed by Poly(amidoamine)-Dendrimer-Encapsulated Gold Nanoparticles

Hideaki Matsuo
,
Akira Fujii
,
Jun-Chul Choi
,
Tadahiro Fujitani
,
Ken-ichi Fujita
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan   Email: k.fujita@aist.go.jp
› Author Affiliations
Further Information

Publication History

Received: 27 June 2019

Accepted after revision: 28 July 2019

Publication Date:
21 August 2019 (online)


Abstract

We prepared gold nanoparticles encapsulated in poly(amidoamine) (PAMAM) dendrimers as templating agents. The resulting gold nanoparticles were used as catalysts for the carboxylative cyclization of propargylic amines with carbon dioxide to afford the corresponding 1,3-oxazolidin-2-ones in yields of up to 99%.

Supporting Information

 
  • References and Notes

  • 1 Cuéllar-Franca RM, Azapagic A. J. CO2 Util. 2015; 9: 82
    • 2a Bhanja P, Modak A, Bhaumik A. Chem. Eur. J. 2018; 24: 7278
    • 2b Xu Y, Lin L, Xiao M, Wang S, Smith AT, Sun L, Meng Y. Prog. Polym. Sci. 2018; 80: 163
    • 2c Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Angew. Chem. Int. Ed. 2016; 55: 7296
    • 2d Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
    • 2e Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 3a Zhang Z, Ye J.-H, Wu D.-S, Zhou Y.-Q, Yu D.-G. Chem. Asian J. 2018; 13: 2292
    • 3b Arshadi S, Vessally E, Sobati M, Hosseinian A, Bekhradnia A. J. CO2 Util. 2017; 19: 120
    • 4a Fujii A, Matsuo H, Choi J.-C, Fujitani T, Fujita K. Tetra­hedron 2018; 74: 2914
    • 4b Sadeghzadeh SM, Zhiani R, Emrani S. Appl. Organomet. Chem. 2018; 32: 3941
    • 4c Fujii A, Choi J.-C, Fujita K. Tetrahedron Lett. 2017; 58: 4483
    • 4d Yu B, Kim D, Kim S, Hong SH. ChemSusChem 2017; 10: 1080
    • 4e Zhao D, Liu X.-H, Zhu C, Kang Y.-S, Wang P, Shi Z, Lu Y, Sun W.-Y. ChemCatChem 2017; 9: 4598
    • 4f Liu X, Wang M.-Y, Wang S.-Y, Wang Q, He L.-N. ChemSusChem 2017; 10: 1210
    • 4g Zhao Y, Qiu J, Li Z, Wang H, Fan M, Wang J. ChemSusChem 2017; 10: 2001
    • 4h Zhao Y, Qiu J, Tian L, Li Z, Fan M, Wang J. ACS Sustainable Chem. Eng. 2016; 4: 5553
    • 4i Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B. Angew. Chem. Int. Ed. 2015; 54: 5399
    • 4j Maggi R, Bertolotti C, Orlandini E, Oro C, Sartori G, Selva M. Tetrahedron Lett. 2007; 48: 2131
    • 4k Kayaki Y, Yamamoto M, Suzuki T, Ikariya T. Green Chem. 2006; 8: 1019
  • 5 Mitsudo T, Hori Y, Yamakawa Y, Watanabe Y. Tetrahedron Lett. 1987; 28: 4417
    • 6a Shi M, Shen Y.-M. J. Org. Chem. 2002; 67: 16
    • 6b Bacchi A, Chiusoli GP, Costa M, Gabriele B, Righi C, Salerno G. Chem. Commun. 1997; 1209
    • 7a Yoshida M, Mizuguchi T, Shishido K. Chem. Eur. J. 2012; 18: 15578
    • 7b Kikuchi S, Yoshida S, Sugawara Y, Yamada W, Cheng H.-M, Fukui K, Sekine K, Iwakura I, Ikeno T, Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
    • 7c Yoshida S, Fukui K, Kikuchi S, Yamada T. Chem. Lett. 2009; 38: 786
    • 8a Fujita K, Inoue K, Sato J, Tsuchimoto T, Yasuda H. Tetra­hedron 2016; 72: 1205
    • 8b Sadeghzadeh SM. Appl. Organomet. Chem. 2016; 30: 835
    • 8c Sadeghzadeh SM. J. Mol. Catal. A: Chem. 2016; 423: 216
    • 8d Hase S, Kayaki Y, Ikariya T. ACS Catal. 2015; 5: 5135
    • 8e Yuan R, Lin Z. ACS Catal. 2015; 5: 2866
    • 8f Fujita K, Sato J, Inoue K, Tsuchimoto T, Yasuda H. Tetrahedron Lett. 2014; 55: 3013
    • 8g Hase S, Kayaki Y, Ikariya T. Organometallics 2013; 32: 5285
    • 9a Rodrigues TS, da Silva AG. M, Camargo PH. C. J. Mater. Chem. A 2019; 7: 5857
    • 9b Liu L, Corma A. Chem. Rev. 2018; 118: 4981
    • 9c Kaur R, Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Heterocycl. Compd. (Engl. Transl.) 2018; 54: 241
    • 9d Campelo JM, Luna D, Luque R, Marinas JM, Romero AA. ChemSusChem 2009; 2: 18
    • 9e Daniel M.-C, Astruc D. Chem. Rev. 2004; 104: 293
    • 10a Savva I, Kalogirou AS, Achilleos M, Vasile E, Koutentis PA, Krasia-Christoforou T. Molecules 2016; 21: 1218
    • 10b Perea-Buceta JE, Wirtanen T, Laukkanen O.-V, Mäkelä MK, Nieger M, Melchionna M, Huittinen N, Lopez-Sanchez JA, Helaja J. Angew. Chem. Int. Ed. 2013; 52: 11835
  • 11 Schröder F, Erdmann N, Noël T, Luque R, Van der Eycken EV. Adv. Synth. Catal. 2015; 357: 3141
    • 12a Kim Y.-G, Oh S.-K, Crooks RM. Chem. Mater. 2004; 16: 167
    • 12b Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ. Macromolecules 2000; 33: 6042
    • 12c Esumi K, Suzuki A, Yamahira A, Torigoe K. Langmuir 2000; 16: 2604
    • 12d Garcia ME, Baker LA, Crooks RM. Anal. Chem. 1999; 71: 256
    • 12e Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K. Langmuir 1998; 14: 3157

      For previously reported transformations catalyzed by the PAMAM-dendrimer-encapsulated gold nanoparticles, see:
    • 13a Nemanashi M, Meijboom R. Langmuir 2015; 31: 9041
    • 13b Nemanashi M, Meijboom R. J. Colloid Interface Sci. 2013; 389: 260
    • 13c Kracke P, Haas T, Saltsburg H, Flytzani-Stephanopoulos M. J. Phys. Chem. C 2010; 114: 16401
    • 13d Esumi K, Miyamoto K, Yoshimura T. J. Colloid Interface Sci. 2002; 254: 402
  • 14 Takahashi M, Imaoka T, Yamamoto K. RSC Adv. 2015; 5: 100693
  • 15 2: HAuCl4/PAMAM = 20:1 (mol/mol), C/[Au] = 50:1 (w/w). A histogram showing the particle-size distribution of the gold nanoparticles 2 is given in the Supporting Information.
  • 16 [Au]: weight of gold in hydrogen tetrachloroaurate(III).
  • 17 In all cases in which 2 was prepared without hydrogen tetrachloroaurate(III) and/or PAMAM 1, the carboxylative cyclization of 3a with CO2 did not proceed.
  • 18 Takahashi M, Imaoka T, Hongo Y, Yamamoto K. Angew. Chem. Int. Ed. 2013; 52: 7419
  • 19 1,3-Oxazolidin-2-ones 4ae : General ProcedureA reaction vessel was charged with 10% methanolic solution of the fourth-generation PAMAM 1 (21 mg, 0.15 μmol) under argon. The MeOH was removed in vacuo, and 1 was redissolved in H2O (2.1 mL). A 0.005 M aqueous solution of HAuCl4 (0.6 mL) was slowly added to the aqueous solution of 1 with stirring. The mixture was stirred for 1 h, then a 0.1 M solution of NaBH4 in 0.3 M aq NaOH (0.3 mL) was added dropwise with vigorous stirring to reduce the AuCl4 to Au nanoparticles. Immediately after the addition of the NaBH4, mesoporous carbon powder (30 mg) was added, and the reaction mixture was vigorously stirred for 30 min to give the carbon-supported PAMAM-encapsulated gold nanoparticles 2 as an aqueous dispersion (3 mL in total), to which toluene (1.5 mL) was added with stirring. The atmosphere in the reaction vessel was then changed from argon to CO2 and the mixture was heated at 40 °C. The appropriate propargylic amine 3 (0.3 mmol for Table 4, entries 1 and 2; 0.15 mmol for entries 3–6) was then added, and the mixture was vigorously stirred at 40 ºC under CO2 at atmospheric pressure for the appropriate time. Catalyst 2 was separated by filtration under a vacuum and washed with CH2Cl2. The filtrate was collected and extracted with CH2Cl2 (×4). The combined organic layer was dried (Na2SO4) and filtered, and the yield of the1,3-oxazolidin-2-one 4 was determined by integration of its 1H NMR absorption with reference to an internal standard [2-(benzyloxy)naphthalene]. 4a, 4b, and 4d were isolated by removal of the CH2Cl2 under reduced pressure and purified by column chromatography (silica gel, hexane–AcOEt).3-Benzyl-5-methylidene-1,3-oxazolidin-2-one (4a)yield: 57.4 mg (99%). 1H NMR (400 MHz, CDCl3): δ = 7.40–7.30 (m, 3 H), 7.30–7.25 (m, 2 H), 4.74 (td, J = 2.6, 3.1 Hz, 1 H), 4.47 (s, 2 H), 4.24 (td, J = 2.2, 3.1 Hz, 1 H), 4.02 (t, J = 2.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 155.6, 149.0, 135.0, 129.0, 128.25, 128.17, 86.7, 47.8, 47.2.
  • 20 In Figure 3, it is assumed that the nucleophilic ring closure from 6 to 4 is probably retarded when an electron-donating methyl group is present at R1.