Synlett 2019; 30(15): 1787-1790
DOI: 10.1055/s-0039-1690130
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium(III)-Catalyzed Cyclopropanation of Unactivated Olefins Initiated by C–H Activation

Erik J. T. Phipps
,
Tiffany Piou
,
Department of Chemistry, Columbia University, New York, NY, 10027, USA   Email: tr2504@columbia.edu
› Author Affiliations
We thank the National Institute of General Medical Sciences (NIGMS, Grant No. GM80442) for support.
Further Information

Publication History

Received: 23 May 2019

Accepted after revision: 11 July 2019

Publication Date:
22 July 2019 (online)


Abstract

We have developed a rhodium(III)-catalyzed cyclopropanation of unactivated olefins initiated by an alkenyl C–H activation. A variety of 1,1-disubstituted olefins undergo efficient cyclopropanation with a slight excess of alkene stoichiometry. A series of mechanistic interrogations implicate a metal carbene as an intermediate.

Supporting Information

 
  • References and Notes

    • 2a Banwell MG, Edwards AJ, Jolliffe KA, Smith JA, Hamel E, Verdier-Pinard P. Org. Biomol. Chem. 2003; 1: 296
    • 2b Newhouse TR, Kaib PS. J, Gross AW, Corey EJ. Org. Lett. 2013; 15: 1591

      For a recent selection of many diazo decomposition reactions, see:
    • 3a Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 3b Davies HM. L, Antoulinakis EG. Org. React. 2004; 57: 1

      For a recent selection of Simmons–Smith-type reactions, see:
    • 4a Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 4b Charette AB, Beauchemin A. Org. React. 2004; 58: 1

      Regarding exo-methylene alkenes:
    • 5a Friedrich EC, Biresaw G. J. Org. Chem. 1982; 47: 1615
    • 5b Stahl K.-J, Hertzsch W, Musso H. Liebigs Ann. Chem. 1985; 1474
    • 5c Roberts C, Walton JC. J. Chem. Soc., Perkin Trans. 2 1985; 841
    • 5d Motherwell WB, Roberts LR. J. Chem. Soc., Chem. Commun. 1992; 1582
    • 6a Dolbier JrW. R, Burkholder CR. J. Org. Chem. 1990; 55: 589
    • 6b Ilchenko NO, Hedberg M, Szabó KJ. Chem. Sci. 2017; 8: 1056
    • 6c Werth J, Uyeda C. Chem. Sci. 2018; 9: 1604

      For selected recent examples of Rh-catalyzed cyclopropanations, see:
    • 7a Muthusamy S, Gunanathan C. Synlett 2003; 1599
    • 7b Hilt G, Galbiati F. Synthesis 2006; 3589
    • 7c Lindsay VN. G, Lin W, Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
    • 7d Lindsay VN. G, Nicolas C, Charette AB. J. Am. Chem. Soc. 2011; 133: 8972
    • 7e Negretti S, Cohen CM, Chang JJ, Guptill GM, Davies HM. L. Tetrahedron 2015; 71: 7415
    • 7f Lehner V, Davies HM. L, Reiser O. Org. Lett. 2017; 19: 4722
    • 7g Sun G.-J, Gong J, Kang Q. J. Org. Chem. 2017; 82: 796
    • 7h Tindall DJ, Werlé C, Goddard R, Philipps P, Farès C, Fürstner A. J. Am. Chem. Soc. 2018; 140: 1884
    • 7i Lindsay VN. G. Rhodium(II)-Catalyzed Cyclopropanation. In Rhodium Catalysis in Organic Synthesis: Methods and Reactions. Tanaka K. Wiley-VCH; Weinheim: 2018: 433
    • 8a Doyle MP, Hu W, Phillips IM, Moody CJ, Pepper AG, Slawin AG. Z. Adv. Synth. Catal. 2001; 343: 112
    • 8b Doyle MP, Hu W. Adv. Synth. Catal. 2001; 343: 299
    • 8c Gharpure SJ, Shukla MK, Vijayasree U. Org. Lett. 2010; 11: 5466
    • 8d Vanier SF, Larouche G, Wurz RP, Charette AB. Org. Lett. 2009; 12: 672
    • 8e Nani RR, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7304
    • 8f Gu H, Huang S, Lin X. Org. Biomol. Chem. 2019; 17: 1154
    • 9a Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 9b Colby DA, Tsai AS, Bergman RG, Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 9c Piou T, Rovis T. Acc. Chem. Res. 2018; 51: 170
  • 10 Piou T, Rovis T. J. Am. Chem. Soc. 2014; 136: 11292
  • 11 Piou T, Romanov-Michailidis F, Ashley MA, Romanova-Michaelides M, Rovis T. J. Am. Chem. Soc. 2018; 140: 9587
    • 12a Piou T, Rovis T. Nature 2015; 527: 86
    • 12b Zhang Y, Liu H, Tang L, Tang H.-J, Wang L, Zhu C, Feng C. J. Am. Chem. Soc. 2018; 140: 10695
  • 13 Duchemin C, Cramer N. Chem. Sci. 2019; 10: 2773
  • 14 Phipps EJ. T, Rovis T. J. Am. Chem. Soc. 2019; 141: 6807
  • 15 General Procedure N-Enoxyphthalimide (0.1 mmol), catalyst [Cp*CF3RhCl2]2 (5 mol%, 0.005 mmol, 3.7 mg), and CsOAc (2 equiv, 0.2 mmol, 38.5 mg) were weighed in a 1-dram vial with a magnetic stir bar. TFE (0.2 M, 500 μL) was added followed by alkene (1.2 equiv, 0.12 mmol). The vial was sealed with a screw cap and stirred at room temperature for 12 h. Upon completion judged by TLC, the crude solution was diluted with EtOAc and partitioned with the addition of DI water. The aqueous layer was extracted three times with EtOAc, and the combined organic extracts were filtered through a pad of Celite® and Na2SO4 then concentrated. The crude residue was purified by flash chromatography (hexane/EtOAc, 19:1) to afford the cyclopropane product.Compound 3ad: Purified by flash chromatography eluting with 5% EtOAc in hexanes; 21.0 mg, 98% yield, colorless oil, R f = 0.73 (4:1 hexanes/EtOAc). 1H NMR (500 MHz, CDCl3): δ = 8.06–7.97 (m, 2 H), 7.59–7.51 (m, 1 H), 7.51–7.43 (m, 2 H), 2.51 (dd, J = 7.3, 5.4 Hz, 1 H), 1.70–1.39 (m, 10 H), 1.19 (dt, J = 12.6, 6.1 Hz, 1 H), 0.95 (dd, J = 7.4, 4.0 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 198.4, 139.1, 132.5, 128.6, 128.2, 38.0, 35.6, 32.2, 28.48, 26.3, 26.2, 26.0, 21.5. IR (neat): 2921, 2850, 1664, 1447, 1396, 1216, 980, 718, 689 cm–1. LRMS (ESI APCI): m/z calcd for C15H18O [M + H]: 215.1; found: 215.1.

    • Diastereoselectivity assigned by analogy to other three-membered rings formed from 4-substituted-exocyclic alkenes:
    • 16a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
    • 16b Carlson RG, Behn NS. J. Org. Chem. 1967; 32: 1363
    • 16c Bellucci G, Chiappe C, Lo Moro G, Ingrosso G. J. Org. Chem. 1995; 60: 6214