Synlett 2020; 31(04): 373-377
DOI: 10.1055/s-0039-1690047
letter
© Georg Thieme Verlag Stuttgart · New York

α-Diazoacetamides in Sc(OTf)3-Catalyzed Tiffeneau–Demjanov Ring Expansion: Application towards the Synthesis of Rare Bicyclic Pyrazoles

Sergey Chuprun
,
Dmitry Dar’in
,
Grigory Kantin
,
Petr Zhmurov
,
Mikhail Krasavin
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   m.krasavin@spbu.ru
› Author Affiliations
This research was supported by the Russian Science Foundation (project grant 19-75-30008).
Further Information

Publication History

Received: 11 November 2019

Accepted after revision: 20 December 2019

Publication Date:
09 January 2020 (online)


Abstract

A novel Sc(OTf)3-catalyzed Tiffeneau–Demjanov ring expansion of six-membered cyclic ketones has been developed. The resulting seven-membered cyclic β-keto carboxamides were found to be versatile precursors to rare bicyclic pyrazoles obtained in modest to good yields via condensation with aryl hydrazines in the presence of Lawesson’s reagent.

Supporting Information

 
  • References and Notes

  • 1 Current address: Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
  • 2 Candeias NR, Paterna R, Gois PM. P. Chem. Rev. 2016; 116: 2937
    • 3a Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc. 2009; 131: 6614
    • 3b Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc. 2011; 133: 8834
    • 4a Katayama S, Nishino H. Synthesis 2019; 51: 3277
    • 4b Hurst TE, Gorman R, Drouhin P, Taylor RJ. K. Tetrahedron 2018; 74: 6485
    • 4c Drouhin P, Hurst TE, Whitwood AC, Taylor RJ. K. Tetrahedron 2015; 71: 7124
    • 4d Joshi MS, Lansakara AI, Pigge FC. Tetrahedron Lett. 2015; 56: 3204
    • 4e Drouhin P, Hurst TE, Whitwood AC, Taylor RJ. K. Org. Lett. 2014; 16: 4900
    • 4f Lansakara AI, Farrell DP, Pigge FC. Org. Biomol. Chem. 2014; 12: 1090
    • 4g Parameswarappa SG, Pigge FC. J. Org. Chem. 2012; 77: 8038
    • 4h Cossy J, Bouzide A. Tetrahedron 1997; 53: 5775
    • 5a Ko TY, Youn SW. Adv. Synth. Catal. 2016; 358: 1934
    • 5b Yasui K, Kato T, Kojima K, Nagasawa K. Chem. Commun. 2015; 51: 2290
    • 5c Cossy J, Belotti D, Bouzide A, Thellend A. Bull. Soc. Chim. Fr. 1994; 131: 723
    • 5d Gyarmati ZC, Csomos P, Bernath G, Valtamo P, Kivelae H, Argay G, Kalman A, Klika KD, Pihlaja K. J. Heterocycl. Chem. 2004; 41: 187
  • 6 A total of 134 α-diazo acetamides are available from commercial sources according to SciFinder® search performed November 5, 2019.
  • 7 Hashimoto T, Naganawa Y, Maruoka K. Chem. Commun. 2010; 46: 6810
  • 8 Characterization Data for Selected CompoundsCompound 4a: yield 250 mg (90%), yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 4.95 (s, 1 H), 3.26 (br s, 4 H), 1.14 (t, J = 7.2 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 164.7, 46.3, 41.4, 13.9. HRMS-ESI: m/z calcd for C6H11N3ONa [M + Na]: 164.0794; found: 164.0790.Compound 4c: yield 245 mg (87%), yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 4.82 (s, 1 H), 3.55 (br s, 2 H), 3.23 (br s, 2 H), 1.93 (br d, J = 26.7 Hz, 4 H). 13C NMR (101 MHz, CDCl3): δ = 163. 9, 46.5, 46.0, 45.8, 25.9, 24.5. HRMS-ESI: m/z calcd for C6H9N3ONa [M + Na]: 162.0638; found: 162.0646.Compound 4e: yield 290 mg (81%), yellow liquid. 1H NMR (400 MHz, CDCl3): δ = 5.05 (s, 1 H), 4.11 (br s, 2 H), 3.13 (br s, 2 H), 2.27 (s, 1 H), 2.09–1.90 (m, 1 H), 0.95 (d, J = 6.7 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ (rotameric mixture) = 166.0, 162.0, 78.8, 72.1, 54.6, 50.9, 47.0, 45.2, 36.4, 27.8, 27.5, 20.0. HRMS-ESI: m/z calcd for C9H13N3ONa [M + Na]: 202.0951; found: 202.0956.
  • 9 General Procedure for the Preparation of Diazo Acetamides 4a–eTo a stirred solution of sodium azide (390 mg, 6.0 mmol) and potassium carbonate (1.1 g, 8.0 mmol) in water (8 mL) 3-(chlorosulfonyl)benzoic acid (882 mg, 4.0 mmol) and the corresponding acetoacetamide 5 (3.0 mmol) were added. The reaction mixture was vigorously stirred at ambient temperature for 1 h, then potassium hydroxide (504 mg, 9.0 mmol) and acetonitrile (5 mL) were added and stirring was continued for 2 h. The resulting mixture was extracted with chloroform (3 × 8 mL), organic phase was dried over calcium chloride and evaporated (40 °C) to dryness to afford diazo acetamide 4 with the purity 95+%.
  • 10 Rossbach J, Harms K, Koert U. Org. Lett. 2015; 17: 3122
  • 12 General Procedure for the Preparation of Compounds 3a–hIn a glass Schlenk tube under inert atmosphere were placed diazoacetamide 4 (0.35 mmol), cyclic ketone (0.7 mmol, 2 equiv.), and dry CH2Cl2 (1 mL). The mixture was cooled during 5 min in ice-salt bath, then scandium triflate (86 mg, 0.175 mmol, 0.5 equiv.) was added in one portion. Intensive gas evolution was observed. The mixture was stirred for 30 min under cooling and left in the ice bath to slowly rise to room temperature. After completion of the reaction (controlled by TLC analysis) the solvent was removed in vacuo. The obtained yelow oil was dissolved in 5 mL of ethyl acetate and washed twice with water (5 mL) and brine (5 mL). The organic phase was dried over MgSO4 and evaporated in vacuo.
  • 13 Characterization Data for Representative CompoundsCompound 3f: purified by column chromatography, ethyl acetate–n-hexane (1:2 to 1:1). Yield 77 mg (78%), transparent oil. 1H NMR (400 MHz, CDCl3): δ = 4.17 (q, J = 7.1 Hz, 2 H), 4.05–3.74 (m, 3 H), 3.55–3.13 (m, 5 H), 2.98 (ddd, J = 14.1, 9.1, 4.6 Hz, 1 H), 2.59–2.70 (m, 1 H), 2.14–2.25 (m, 1 H), 1.99–2.10 (m, 1 H), 1.28 (t, J = 7.1 Hz, 3 H), 1.18 (t, J = 7.1 Hz, 3 H), 1.14 (t, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, DMSO-d 6, 80 °C): δ = 207.7, 168.7, 155.2, 61.2, 54.9, 46.7, 43.8 (br s), 42.1, 41.7 (br s), 39.8 (br s), 29.4 (s), 14.9, 14.5 (br s), 13.16 (br s). HRMS-ESI: m/z calcd for C14H24N2O4Na [M + Na]: 307.1628; found: 307.1617.Compound 3g: purified by column chromatography, ethyl acetate–n-hexane (1:1). Yield 61 mg (76%), transparent oil. 1H NMR (400 MHz, CDCl3): δ = 3.81 (dd, J = 9.5, 4.7 Hz, 1 H), 3.44 (dq, J = 14.1, 7.1 Hz, 1 H), 3.38–3.28 (m, 2 H), 3.27–3.10 (m, 2 H), 3.02–2.84 (m, 3 H), 2.84–2.62 (m, 2 H), 2.46–2.27 (m, 2 H), 1.17 (t, J = 7.1 Hz, 3 H), 1.12 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 207.04, 168.07, 55.92, 45.77, 41.82, 40.40, 31.34, 31.21, 26.51, 14.30, 12.79. HRMS-ESI: m/z calcd for C11H19NO2SNa [M + Na]: 252.1034; found: 252.1025.Compound 3h: purified by column chromatography, ethyl acetate–n-hexane (1:1). Yield 40 mg (54%), transparent oil. 1H MR (400 MHz, CDCl3): δ = 4.17 (ddd, J = 12.9, 5.8, 2.5 Hz, 1 H), 4.03 (ddd, J = 12.5, 5.6, 3.9 Hz, 1 H), 3.78 (dd, J = 9.8, 4.7 Hz, 1 H), 3.71–3.53 (m, 2 H), 3.51–3.49 (m, 2 H), 3.34 (dt, J = 13.6, 7.0 Hz, 1 H), 3.25 (dq, J = 14.5, 7.2 Hz, 1 H), 3.14 (ddd, J = 14.0, 9.7, 4.0 Hz, 1 H), 2.64 (ddd, J = 14.3, 5.6, 2.8 Hz, 1 H), 2.45–2.35 (m, 1 H), 2.07–1.97 (m, 1 H), 1.21 (t, J = 7.1 Hz, 3 H), 1.15 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 207.6, 168.6, 70.6, 66.2, 55.2, 46.5, 42.2, 40.5, 29.7, 14.6, 12.9. HRMS-ESI: m/z calcd for C11H19NO3Na [M + Na]: 236.1263; found: 236.1274.
    • 14a Li Z, Lam SM, Ip I, Wong W, Chiu P. Org. Lett. 2017; 19: 4464
    • 14b Sengupta S, Mondal S. Tetrahedron Lett. 1999; 40: 8685
    • 14c Muthusamy S, Babu SA, Gunanathan C. Synth. Commun. 2001; 31: 1205
    • 14d Kutney JP, Chen Y.-H, Rettig SJ. Can. J. Chem. 1996; 74: 666
    • 15a Liu H.-J, Wang D.-X, Kim JB, Browne EN. C, Wang Y. Can. J. Chem. 1997; 75: 899
    • 15b Paquette LA, Watson TJ, Friedrich D, Bishop R, Bacque E. J. Org. Chem. 1994; 59: 5700
    • 15c Scognamillo S. Ph.D. Dissertation. Technical University of Dortmund; Germany: 2004
    • 15d Shershnev I, Dar’in D, Chuprun S, Kantin G, Bakulina O, Krasavin M. Tetrahedron Lett. 2019; 60: 1800
  • 16 Li W, Tan F, Hao X, Wang G, Tang Y, Liu X, Lin L, Feng X. Angew. Chem. Int. Ed. 2015; 54: 1608
    • 17a Rendina V, Moebius DC, Kingsbury JS. Org. Lett. 2011; 13: 2004
    • 17b Wommack AJ, Moebius DC, Travis AL, Kingsbury JS. Org. Lett. 2009; 11: 3202
    • 17c Dabrowski JA, Moebius DC, Wommack AJ, Kornahrens AF, Kingsbury JS. Org. Lett. 2010; 12: 3598
    • 17d Rendina VA, Kaplan HZ, Kingsbury JS. Synthesis 2012; 44: 686
    • 17e Moebius DC, Kingsbury JS. J. Am. Chem. Soc. 2009; 131: 878
  • 18 Bouillon J.-P, Frisque-Hesbain A.-M, Janousek Z, Viehe HG. Heterocycles 1995; 40: 661
    • 19a Kim HS, Hammill JT, Scott DC, Chen Y, Min J, Rector J, Singh B, Schulman BA, Guy RK. J. Med. Chem. 2019; 62: 8429
    • 19b Xu H, Jiang X, Wei X, Zhang Z, Lin F, Yao G, Deng C, Zhao C, Yang S, Zhao W. WO 2019086009, 2019 , Chem. Abstr. 2019, 170, 605402
    • 19c Kozek KA, Du Y, Sharma S, Prael FJ, Spitznagel BD, Kharade SV, Denton JS, Hopkins CR, Weaver CD. ACS Chem. Neurosci. 2019; 10: 358
  • 20 Bauer VJ, Agnew MN, Effland RC. US 3928378, 1976 , Chem. Abstr. 1976, 84, 105585
  • 21 Chupak LS, Kaneko T, Josyula VP. V. N, Kim J.-Y, Choy AL, Hagen SE, Boyer FE. WO 2004069832, 2004 , Chem. Abstr. 2004, 141, 207196
  • 22 Davey WB, Leeson PD, Rowley M. WO 9507893, 1995 , Chem. Abstr. 1995, 123, 33070
  • 23 Ohmoto K, Kato M, Katsumata S, Manako J. WO 2005063241, 2005 , Chem. Abstr. 2005, 143, 133368
  • 24 Rynearson KD, Buckle RN, Barnes KD, Herr RJ, Mayhew NJ, Paquette WD, Sakwa SA, Nguyen PD, Johnson G, Tanzi RE, Wagner SL. Bioorg. Med. Chem. Lett. 2016; 26: 3928
  • 25 Dodd DS, Martinez RL. Tetrahedron Lett. 2004; 45: 4265
  • 26 General Procedure for the Preparation of Pyrazoles 6a–hTo a mixture of cyclic β-ketoamide 3 (0.23 mmol), the corresponding arylhydrazine (0.26 mmol, 1.1 equiv.), and Lawesson’s reagent (143 mg, 0.35 mmol, 1.5 equiv.) in a 10 mL dry vial was added 2 mL of dry THF. The reaction mixture was stirred at room temperature for 15 min, and the vial was transferred to a preheated oil bath. The mixture was heated at 55 °C for 24 h. After evaporation of volatiles the resulting oil was purified by flash chromatography on SiO2 eluting with diethyl ether–n-heptane (1:1).
  • 27 Characterization Data for Selected CompoundsCompound 6a: yield 44 mg (68%), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.71–7.62 (m, 2 H), 7.42–7.35 (m, 2 H), 7.30–7.21 (m, 1 H), 3.02 (q, J = 7.2 Hz, 4 H), 2.81–2.74 (m, 2 H), 2.62–2.54 (m, 2 H), 1.91–1.81 (m, 2 H), 1.77–1.61 (m, 4 H), 0.99 (t, J = 7.2 Hz, 6 H). 13C NMR (101 MHz, CDCl3): δ = 154.3, 144.9, 140.4, 128.3, 125.9, 124.0, 116.7, 77.3, 77.0, 76.7, 47.4, 32.6, 30.5, 29.2, 27.9, 24.7, 13.3. HRMS-ESI: m/z calcd for C18H26N3 [M + H]: 284.2121; found: 284.2136.Compound 6g: yield 22 mg (32%), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.60 (dd, J = 7.7, 1.6 Hz, 2 H), 7.41 (t, J = 7.8 Hz, 2 H), 7.33–7.18 (m, 1 H), 3.68 (dd, J = 5.7, 3.5 Hz, 4 H), 3.09 (dd, J = 5.7, 3.5 Hz, 4 H), 2.83–2.72 (m, 2 H), 2.73–2.64 (m, 2 H), 1.94–1.81 (m, 2 H), 1.74–1.68 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 154.7, 145.4, 139.8, 128.5, 126.4, 124.2, 115.4, 67.3, 51.1, 32.5, 30.3, 29.2, 27.7, 24.6. HRMS-ESI: m/z calcd for C18H26N3O [M + H]: 298.1914; found: 298.1928.Compound 6h: yield 27 mg (31%), pale yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.60 (d, J = 7.9 Hz, 2 H), 7.40 (t, J = 7.8 Hz, 2 H), 7.33–7.23 (m, 1 H), 4.22 (q, J = 7.1 Hz, 2 H), 3.71–3.54 (m, 4 H), 3.04–2.88 (m, 6 H), 2.78–2.64 (m, 2 H), 1.31 (t, J = 7.1 Hz, 3 H), 0.98 (t, J = 7.2 Hz, 6 H). 13C NMR (101 MHz, DMSO-d 6, 80 °C): δ = 155.4, 150.9, 145.8, 140.5, 128.9, 126.6, 124.0, 114.5, 61.1, 48.3, 47.3, 47.1, 30.7, 25.0, 15.0, 13.6. HRMS-ESI: m/z calcd for C20H28N4O2Na [M + Na]: 379.2104; found: 379.2110.